Lattices

Lukas Helminger

Mathematical Foundations of Cryptography - WT 2019/20

Outline

Lattice Reduction Algorithms

- The Two-Dimensional Case
- Lenstra-Lenstra-Lováz Algorithm (LLL)

Literature

The slides are based on the following sources

- An Introduction to Mathematical Cryptography, Hoffstein, Jeffrey, Pipher, Jill, Silverman, J.H.
- The LLL Algorithm, Phong Q. Nguyen, Brigitte Vallée (Eds.)

Lattice Reduction Algorithms

Recap from Last Lecture

Lattice: Basis, Fundamental Domain, Volume

Recap from Last Lecture

Lattice: Basis, Fundamental Domain, Volume
SVP: Minkowski's and Hermite's Theorem

Recap from Last Lecture

Lattice: Basis, Fundamental Domain, Volume
SVP: Minkowski's and Hermite's Theorem
Reduction: Babai's Algorithm

Lagrange-Reduced

Definition
Lagrange-reduced Let L be a two-dimensional lattice. A basis $\left(v_{1}, v_{2}\right)$ of L is said to be Lagrange-reduced if and only if

$$
\left\|v_{1}\right\| \leq\left\|v_{2}\right\| \quad \text { and } \quad\left|v_{1} \cdot v_{2}\right| \leq \frac{\left\|v_{1}\right\|^{2}}{2}
$$

Optimal: $\lambda_{1}(L)=\left\|v_{1}\right\|$

Lagrange's Reduction Algorithm

Input: A basis (u, v) of a 2-dimensional lattice L. Ouput: A Lagrange-reduced basis of L.

Lagrange's Reduction Algorithm

Input: A basis (u, v) of a 2-dimensional lattice L. Ouput: A Lagrange-reduced basis of L.

$$
\begin{aligned}
& \text { if }\|u\|<\|v\| \text { then } \\
& \quad \text { sawp } u \text { and } v \\
& \text { while }\|v\|>\|u\| \text { do } \\
& \qquad r \leftarrow u-q v \text { where } q=\left\lfloor\frac{u \cdot v}{\|v\|^{2}}\right\rceil \\
& \qquad u \leftarrow v \\
& \quad v \leftarrow r
\end{aligned} \text { return }(u, v) \text {. }
$$

Lagrange Reduction: Example
Input: $v=\binom{2}{0}, u=\binom{5}{1}$

Lagrange Reduction: Example
Input: $v=\binom{2}{0}, u=\binom{5}{1}$

Lagrange Reduction: Example
Input: $v=\binom{2}{0}, u=\binom{5}{1}$

Lagrange Reduction: Example

Input: $v=\binom{2}{0}, u=\binom{5}{1}$

Task: Solve SVP for the lattice generated by

$$
v_{1}=(66586820,65354729)^{T}, v_{2}=(6513996,6393464)^{T} .
$$

Size-Reduction

Definition (Size-Reduced)
A basis v_{1}, \ldots, v_{n} of a lattice is size-reduced if its Gram-Schmidt orthogonalization satisfies

$$
\left|\mu_{i, j}\right| \leq \frac{1}{2} .
$$

Size-Reduction

Definition (Size-Reduced)

A basis v_{1}, \ldots, v_{n} of a lattice is size-reduced if its Gram-Schmidt orthogonalization satisfies

$$
\left|\mu_{i, j}\right| \leq \frac{1}{2} .
$$

Input: A basis $\left(v_{1}, \ldots v_{n}\right)$ of a lattice L.
Ouput: A size-reduced basis of L.

Size-Reduction

Definition (Size-Reduced)

A basis v_{1}, \ldots, v_{n} of a lattice is size-reduced if its Gram-Schmidt orthogonalization satisfies

$$
\left|\mu_{i, j}\right| \leq \frac{1}{2} .
$$

Input: A basis $\left(v_{1}, \ldots v_{n}\right)$ of a lattice L.
Ouput: A size-reduced basis of L.

$$
\begin{aligned}
& \text { Compute all the Gram-Schmidt coefficients } \mu_{i, j} \\
& \text { for } i=2 . . n \text { do } \\
& \qquad \begin{array}{c}
\text { for } j=(i-1) . .1 \text { do } \\
\quad v_{i} \leftarrow v_{i}-\left\lfloor\mu_{i, j}\right\rceil v_{j} \\
\text { for } k=1 . . j \text { do } \\
\quad \mu_{i, k} \leftarrow \mu_{i, k}-\left\lfloor\mu_{i, j}\right\rceil \mu_{j, k} \\
\hline
\end{array}
\end{aligned}
$$

LLL Algorithm

Definition (LLL-Reduced)

Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for a lattice L and denote its associated Gram-Schmidt orthogonal basis as $v_{1}^{*}, \ldots, v_{n}^{*}$. The basis is said to be LLL-reduced if it is size-reduced and satisfies for all $1<i \leq n$.

$$
\left\|v_{i}^{*}\right\|^{2} \geq\left(\frac{3}{4}-\mu_{i, i-1}^{2}\right)\left\|v_{i-1}^{*}\right\|^{2} . \quad \text { (Lovász Condition). }
$$

Why Lovász Condition?

- size-reduced
- not LLL-reduced

Why Lovász Condition?

Why Lovász Condition?

LLL-reduced Basis is Good Basis

Theorem

Let L be a lattice of dimension n. Any LLL reduced basis v_{1}, \ldots, v_{n} for L has the following property:

$$
\prod_{i=1}^{n}\left\|v_{i}\right\| \leq 2^{\frac{n(n-1)}{4}} \operatorname{vol}(L)
$$

In particular,

$$
\left\|v_{1}\right\| \leq 2^{\frac{n-1}{2}} \lambda_{1}(L)
$$

Thus an $L L L$ reduced basis solves apprSVP within a factor of $2^{(n-1) / 2}$.

LLL Algorithm

Input: A basis $\left(v_{1}, \ldots v_{n}\right)$ of a lattice L. Ouput: A LLL-reduced basis of L.

LLL Algorithm

Input: A basis $\left(v_{1}, \ldots v_{n}\right)$ of a lattice L. Ouput: A LLL-reduced basis of L.

```
Size-reduce ( }\mp@subsup{v}{1}{},\ldots\mp@subsup{v}{n}{}
if }\existsj\in{2,\ldots,n}:\mathrm{ Lovász Condition violated then
    swap v}\mp@subsup{v}{j}{}\mathrm{ and }\mp@subsup{v}{j-1}{
    LLL(v
```


LLL Algorithm

Input: A basis $\left(v_{1}, \ldots v_{n}\right)$ of a lattice L.
Ouput: A LLL-reduced basis of L.

$$
\begin{aligned}
& \text { Size-reduce }\left(v_{1}, \ldots v_{n}\right) \\
& \text { if } \exists j \in\{2, \ldots, n\}: \text { Lovász Condition violated then } \\
& \quad \text { swap } v_{j} \text { and } v_{j-1} \\
& \quad \operatorname{LLL}\left(v_{1}, \ldots, v_{n}\right)
\end{aligned}
$$

Theorem

Given a basis v_{1}, \ldots, v_{n} of a Lattice L the LLL algorithm calculates an LLL-reduced basis in time

$$
\mathcal{O}\left(n^{6} \log ^{3} B\right), \quad \text { where } B=\max _{i}\left\|v_{i}\right\|
$$

Proof sketch

It is clear that the output is LLL-reduced. So we only have to show finite number of steps.

- $\quad L_{l}=$ lattice spanned by $v_{1}, \ldots v_{l}$.

Proof sketch

It is clear that the output is LLL-reduced. So we only have to show finite number of steps.

- $\quad L_{l}=$ lattice spanned by $v_{1}, \ldots v_{l}$.
- $d_{l}=\prod_{i=1}^{l}\left\|v_{i}^{*}\right\|^{2}$ and $D=\prod_{i=1}^{l} d_{l} \Rightarrow \operatorname{det}\left(L_{l}\right)^{2}=d_{l}$.

Proof sketch

It is clear that the output is LLL-reduced. So we only have to show finite number of steps.

- $L_{l}=$ lattice spanned by $v_{1}, \ldots v_{l}$.
- $d_{l}=\prod_{i=1}^{l}\left\|v_{i}^{*}\right\|^{2}$ and $D=\prod_{i=1}^{l} d_{l} \Rightarrow \operatorname{det}\left(L_{l}\right)^{2}=d_{l}$.
- D changes only when swapping. More precisely, D is reduced by a factor of at least $(3 / 4)^{N}$ (argumentation with fact that Lovász condition is violated).

Proof sketch

It is clear that the output is LLL-reduced. So we only have to show finite number of steps.

- $\quad L_{l}=$ lattice spanned by $v_{1}, \ldots v_{l}$.
- $d_{l}=\prod_{i=1}^{l}\left\|v_{i}^{*}\right\|^{2}$ and $D=\prod_{i=1}^{l} d_{l} \Rightarrow \operatorname{det}\left(L_{l}\right)^{2}=d_{l}$.
- D changes only when swapping. More precisely, D is reduced by a factor of at least $(3 / 4)^{N}$ (argumentation with fact that Lovász condition is violated).
- Bound D from above with Hermite's Theorem.

LLL Example

Task: Compute an LLL-reduced basis of the 6-dimensional lattice L with basis given by the rows of the matrix

$$
\left(\begin{array}{cccccc}
19 & 2 & 32 & 46 & 3 & 33 \\
15 & 42 & 11 & 0 & 3 & 24 \\
43 & 15 & 0 & 24 & 4 & 16 \\
20 & 44 & 44 & 0 & 18 & 15 \\
0 & 48 & 35 & 16 & 31 & 31 \\
48 & 33 & 32 & 9 & 1 & 29
\end{array}\right)
$$

Also, compute the Hadamard ratio of both basis.

