

Lukas Helminger

Mathematical Foundations of Cryptography – WT 2019/20

SCIENCE PASSION TECHNOLOGY

Outline

Lattice Reduction Algorithms

- The Two-Dimensional Case
- Lenstra-Lenstra-Lováz Algorithm (LLL)

Literature

The slides are based on the following sources

- An Introduction to Mathematical Cryptography, Hoffstein, Jeffrey, Pipher, Jill, Silverman, J.H.
- The LLL Algorithm, Phong Q. Nguyen, Brigitte Vallée (Eds.)

Lattice Reduction Algorithms

Recap from Last Lecture

Lattice: Basis, Fundamental Domain, Volume

Recap from Last Lecture

Lattice: Basis, Fundamental Domain, Volume

SVP: Minkowski's and Hermite's Theorem

Recap from Last Lecture

Lattice: Basis, Fundamental Domain, Volume

SVP: Minkowski's and Hermite's Theorem

Reduction: Babai's Algorithm

Lagrange-Reduced

Definition

Lagrange-reduced Let *L* be a two-dimensional lattice. A basis (v_1, v_2) of *L* is said to be Lagrange-reduced if and only if

$$||v_1|| \le ||v_2||$$
 and $|v_1 \cdot v_2| \le \frac{||v_1||^2}{2}$.

Lagrange's Reduction Algorithm

Input: A basis (u, v) of a 2-dimensional lattice *L*. **Ouput:** A Lagrange-reduced basis of *L*.

Lagrange's Reduction Algorithm

Input: A basis (u, v) of a 2-dimensional lattice *L*. **Ouput:** A Lagrange-reduced basis of *L*.

```
if ||u|| < ||v|| then
sawp u and v
while ||v|| > ||u|| do
r \leftarrow u - qv where q = \left\lfloor \frac{u \cdot v}{||v||^2} \right\rfloor
u \leftarrow v
v \leftarrow r
return (u, v)
```

Input:
$$v = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, u = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

 $u = (5, 1)$
 $v = (2, 0)$

Input:
$$v = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, u = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

 $(-1, 1) = v$
 $u = (2, 0)$

Input:
$$v = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, u = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

 $(-1, 1) = u$
 $v = (1, 1)$

Input:
$$v = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, u = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

 $(-1, 1) = u$
 $v = (1, 1)$

Task: Solve SVP for the lattice generated by

$$v_1 = (66586820, 65354729)^T, v_2 = (6513996, 6393464)^T.$$

Size-Reduction

Definition (Size-Reduced)

A basis v_1, \ldots, v_n of a lattice is size-reduced if its Gram-Schmidt orthogonalization satisfies

$$|\mu_{i,j}| \leq \frac{1}{2}.$$

Size-Reduction

Definition (Size-Reduced)

A basis v_1, \ldots, v_n of a lattice is size-reduced if its Gram-Schmidt orthogonalization satisfies

$$|\mu_{i,j}|\leq \frac{1}{2}.$$

Input: A basis $(v_1, \ldots v_n)$ of a lattice *L*. **Ouput:** A size-reduced basis of *L*.

Size-Reduction

Definition (Size-Reduced)

A basis v_1, \ldots, v_n of a lattice is size-reduced if its Gram-Schmidt orthogonalization satisfies

$$|\mu_{i,j}|\leq \frac{1}{2}.$$

Input: A basis $(v_1, \ldots v_n)$ of a lattice *L*. **Ouput:** A size-reduced basis of *L*.

> Compute all the Gram-Schmidt coefficients $\mu_{i,j}$ for i = 2..n do for j = (i - 1)..1 do $v_i \leftarrow v_i - \lfloor \mu_{i,j} \rfloor v_j$ for k = 1..j do $\mu_{i,k} \leftarrow \mu_{i,k} - \lfloor \mu_{i,j} \rfloor \mu_{j,k}$

Definition (LLL-Reduced)

Let $B = \{v_1, \ldots, v_n\}$ be a basis for a lattice *L* and denote its associated Gram-Schmidt orthogonal basis as v_1^*, \ldots, v_n^* . The basis is said to be LLL-reduced if it is size-reduced and satisfies for all $1 < i \le n$.

$$\|v_i^*\|^2 \ge \left(\frac{3}{4} - \mu_{i,i-1}^2\right) \|v_{i-1}^*\|^2.$$
 (Lovász Condition).

Why Lovász Condition?

Why Lovász Condition?

Why Lovász Condition?

LLL-reduced Basis is Good Basis

Theorem

Let *L* be a lattice of dimension *n*. Any LLL reduced basis v_1, \ldots, v_n for *L* has the following property:

$$\prod_{i=1}^{n} \|v_i\| \le 2^{\frac{n(n-1)}{4}} \operatorname{vol}(L).$$

In particular,

$$\|\mathbf{v}_1\| \leq 2^{\frac{n-1}{2}}\lambda_1(L).$$

Thus an *LLL* reduced basis solves apprSVP within a factor of $2^{(n-1)/2}$.

Input: A basis $(v_1, \ldots v_n)$ of a lattice *L*. **Ouput:** A LLL-reduced basis of *L*.

Input: A basis $(v_1, \ldots v_n)$ of a lattice *L*. **Ouput:** A LLL-reduced basis of *L*.

```
Size-reduce (v_1, \dots v_n)

if \exists j \in \{2, \dots, n\}: Lovász Condition violated then

swap v_j and v_{j-1}

LLL(v_1, \dots, v_n)
```

Input: A basis $(v_1, \ldots v_n)$ of a lattice *L*. **Ouput:** A LLL-reduced basis of *L*.

```
Size-reduce (v_1, \ldots v_n)

if \exists j \in \{2, \ldots, n\}: Lovász Condition violated then

swap v_j and v_{j-1}

LLL(v_1, \ldots, v_n)
```

Theorem

Given a basis v_1, \ldots, v_n of a Lattice *L* the LLL algorithm calculates an LLL-reduced basis in time $\mathcal{O}(n^6 \log^3 B), \quad \text{where } B = \max \|v_i\|.$

It is clear that the output is LLL-reduced. So we only have to show finite number of steps.

• L_l = lattice spanned by $v_1, \ldots v_l$.

It is clear that the output is LLL-reduced. So we only have to show finite number of steps.

• L_l = lattice spanned by $v_1, \ldots v_l$.

•
$$d_l = \prod_{i=1}^l \|v_i^*\|^2$$
 and $D = \prod_{i=1}^l d_l \Rightarrow \det(L_l)^2 = d_l$.

It is clear that the output is LLL-reduced. So we only have to show finite number of steps.

- L_l = lattice spanned by $v_1, \ldots v_l$.
- $d_l = \prod_{i=1}^l \|v_i^*\|^2$ and $D = \prod_{i=1}^l d_l \Rightarrow \det(L_l)^2 = d_l$.
- D changes only when swapping. More precisely, D is reduced by a factor of at least (3/4)^N (argumentation with fact that Lovász condition is violated).

It is clear that the output is LLL-reduced. So we only have to show finite number of steps.

- L_l = lattice spanned by $v_1, \ldots v_l$.
- $d_l = \prod_{i=1}^l \|v_i^*\|^2$ and $D = \prod_{i=1}^l d_l \Rightarrow \det(L_l)^2 = d_l$.
- D changes only when swapping. More precisely, D is reduced by a factor of at least (3/4)^N (argumentation with fact that Lovász condition is violated).
- Bound *D* from above with Hermite's Theorem.

LLL Example

Task: Compute an LLL-reduced basis of the 6-dimensional lattice *L* with basis given by the rows of the matrix

(19	2	32	46	3	33)
15	42	11	0	3	24
43	15	0	24	4	16
20	44	44	0	18	15
0	48	35	16	31	31
48	2 42 15 44 48 33	32	9	1	29)

Also, compute the Hadamard ratio of both basis.