
Secure Product Lifecyle

Penetration Testing for IoT Devices –

A Hardware Evaluator’s Perspective

Christoph Herbst

2

LAST WEEKS…

◼ Security testing: Mobile Apps

▪ Vulnerabilities and testing of mobile apps

▪ White/Grey/Blackbox → we will revisit this part

▪ Static analysis versus dynamic analysis

▪ OWASP: MASVS (verification standard) and MASTG (testing guide)

▪ OWASP Top 10 for mobile devices

▪ Examples

◼ IoT security is not just mobile (app) security and network/web

penetration testing

→ This lecture focuses on IoT in general with a special focus on HW

3

LITERATURE

Marcel Küppers and Sebastian Bicchi, „Praktische Einführung in Hardware

Hacking - Sicherheitsanalyse und Penetration Testing für IoT-Geräte und

Embedded Devices“, MITP, Dec. 2019

Andrew Huang, „Hacking the Xbox - An Introduction to Reverse

Engineering“, No Starch Press, Inc., 2003

https://nostarch.com/xboxfree

Craig Smith, „The Car Hacker's Handbook: A Guide for the

Penetration Tester” , No Starch Press, Inc., 2016

https://nostarch.com/xboxfree

4

EXAMPLES OF IOT HACKS

Insurance company refuses to pay after car

hack via „Keyless Go“ system

→ court confirms rightfulness (2020)

„Hello Barbie“ – Insufficient security

allows hackers to: eavesdrop & speak

over the Internet (2015)

“Hackers Remotely

Kill a Jeep on the

Highway” (2015)

Kaiji Botnet uses automated

atttacks against SSH to infect

IoT devices (2020)

“Hackers are hijacking

smart building access

systems to launch

DDoS attacks” (2020)

5

TARGET OF EVALUATION (TOE)

6

WHITEBOX VS. BLACKBOX TESTING

◼ Blackbox

▪ Tester gets same (public) information as a consumer

▪ Unknown algorithm details and countermeasures

▪ Samples same/similar to product

▪ No further support from developer

◼ Whitebox

▪ Tester has in-depth knowledge about internals

▪ Algorithms and countermeasures declared and described in detail

▪ Samples prepared for testing (opened, added functionality)

▪ Support from developer

▪ → More common in high-security domains

GREY BOX

7

IoT Hardware Evaluation Flow

8

IOT HARDWARE ANALYSIS FLOW

1. Identification of samples

2. OSINT analysis

3. Remove casing

4. Component identification

5. Penetration tests

a) Security review PCB design

b) Debug interfaces & configuration ports

c) Memory interfaces

d) Firmware and configuration corruption

e) Glitching of security countermeasures

f) Probing of data buses

g) Interfaces tests (secure comm., analysis, attacks)

 … up to dedicated device tests

9

1. IDENTIFICATION OF SAMPLES

◼ Check that what you are trying to test is actually

the TOE that is intended to be tested!

◼ Depends on device that you test (e.g. label on

device, or device output at start-up →

identification and version)

◼ Sounds trivial but if you perform the evaluation

on the wrong device there is lots of work done

without any use

https://sec-consult.com/en/blog/2019/02/reverse-

engineering-architecture-pinout-plc/

→ Intersting article

https://sec-consult.com/en/blog/2019/02/reverse-engineering-architecture-pinout-plc/
https://sec-consult.com/en/blog/2019/02/reverse-engineering-architecture-pinout-plc/

10

2. OPEN SOURCE INTELLIGENCE ANALYSIS (OSINT)

◼ Exploring the publicly available data sources

▪ Data sheets and user manuals

▪ Firmware if available

▪ Reports and blogs

▪ Papers, etc.

▪ Specific search engines

◼ Information gathered

▪ Use cases and technologies

▪ Interface descriptions

▪ Hardware structure & components

▪ Data flow diagrams

▪ Known attacks & standard passwords

◼ → Make the black box a bit more greyish

11

3. REMOVE CASING – GETTING INTO THE DEVICE

◼ Can be very trivial or very complex

◼ Sometimes considered as part of the physical security of the device

▪ Limited testing time!

◼ Destruction not always an option

▪ Limited samples

▪ Some tests/attacks required an open and working sample

◼ Goal: get to the electronic parts

12

4. COMPONENT IDENTIFICATION

◼ Starting point: limited information on internal electronic parts

◼ Denote all main electronic components

▪ SoCs

▪ CPUs, µCs

▪ Memory ICs

▪ Debug & config ports

▪ Disconnected interfaces →

▪ Everything that could be security relevant

e.g. suspicious or undocumented interface

◼ → Back to OSINT (update information)

◼ Output: list of components with an assessment of possible

security impact

13

5. PENETRATION TESTS

◼ Do whatever an attacker does…

◼ Inputs

▪ Information from Component Identification

▪ OSINT

◼ Create a test plan

◼ Keep in mind for planning:
• Scope (what was agreed on with customer?)

• Limited available time (up to this point already consumed >2-3 days)

• HW pentests are not the only tests to be run (network pen testing, mobile app tests)

• Attack potential for IoT (basic to substantial)

▪ What tests are the most critical ones (low-hanging fruits for an attacker)?

▪ Hardware reverse engineering and bespoke equipment is usually out of scope

• Coverage

14

Hardware Pentesting Examples

15

ROOT OF TRUST

◼ What is a Root of Trust?

◼ Foundation for all security related functions

▪ e.g. Boot Loader relies on RoT for loading firmware image

◼ Examples

▪ Hardcoded credentials (passwords) → not a good idea

▪ Hardware security module (HSM)

▪ Secure memory (one-time writable, limited access)

▪ Physically unclonable functions

◼ Assume to be secure during evaluation

▪ verify it, if possible

◼ Often hardware security modules seen as RoT

▪ trusted execution environment (TEE) → actually not a module

▪ execution of cryptographic functions (signature, de- and encryption)

RoT

16

HARDWARE ROOT OF TRUST

◼ Threat model/scope

▪ Physical attacks in scope?

◼ Tamper resistance

▪ how is it achieved?

▪ E.g. on-chip voltage regulators, attack sensors, redundancy, error counters…

◼ Security perimeter

▪ What needs to be protected? What relies on the RoT?

▪ Primary assets (e.g. user data, firmware, IPs)

▪ Secondary assets (e.g. cryptographic keys)

▪ Countermeasures & components rely on RoT

◼ (True) random number generators

▪ Lots of countermeasures and cryptographic functions depend on (T)RNG

▪ Different classes: PTRG.1-3, DRG.1-4 → different use cases

▪ Check soundness through online tests

17

HOW TO EVALUATE „ROOT OF TRUST“?

◼ Check that assumptions on RoT are meaningful & consistent

▪ e.g. External flash assumed to be secure memory for static passwords

 → not a good idea

▪ RNG class suitable

◼ Check for tamper resistance if in scope

▪ E.g. glitching, underpowering

◼ Usually no direct tests on RoT

▪ → no interface provided to test assumptions (cf. CC evaluations)

18

SECURE BOOT

◼ Security feature of many embedded devices

▪ Integrity & authenticity of code and data stored in non-volatile storage

▪ Often replay/downgrading protection

▪ Bring the system to a defined & secure state after start-up

▪ → if secure boot can be bypassed the whole system can be compromised

◼ Implemented on a wide variety of devices

▪ E.g. phones, TVs, automotive, routers, consoles etc.

◼ Hard to analyse and often unexplored

▪ Complex and tight hardware & software interaction

▪ High privileged functionality implemented at the lower levels

◼ All Secure boot implementations are

▪ different but lots of similarities

19

SECURE BOOT

SUMMARY

◼ Became a common chip feature

◼ Requires hardware to be secure (RoT)

◼ Relies on (strong) cryptographic primitives

◼ Must verify all code and data

▪ To bring system into a defined secure state

◼ Breaking Secure Boot early usually grants higher privileges

▪ Key, ROM code, Countermeasures, HW protection, Code execution

20

HOW TO TEST THE BOOTLOADER?

◼ Change firmware image → see if bootloader reacts at all

◼ Perform glitching attacks (next slide)

◼ Try other ways to overcome bootloader

▪ E.g. TOCTOU (time of check/time of use) attacks

▪ → Change flash image after check

◼ Full key extraction of NVIDIA TSEC:

https://gist.githubusercontent.com/plutooo/733318dbb57166d203c1

0d12f6c24e06/raw/15c5b2612ab62998243ce5e7877496466cabb77

f/tsec.txt

https://gist.githubusercontent.com/plutooo/733318dbb57166d203c10d12f6c24e06/raw/15c5b2612ab62998243ce5e7877496466cabb77f/tsec.txt
https://gist.githubusercontent.com/plutooo/733318dbb57166d203c10d12f6c24e06/raw/15c5b2612ab62998243ce5e7877496466cabb77f/tsec.txt
https://gist.githubusercontent.com/plutooo/733318dbb57166d203c10d12f6c24e06/raw/15c5b2612ab62998243ce5e7877496466cabb77f/tsec.txt

21

GLITCHING OF SECURITY COUNTERMEASURES

◼ Different ways to glitch a device

▪ Changing environmental conditions (heat/cool)

▪ Flashlight (cheap & powerful EM source)

▪ Clock glitching

▪ (Supply) voltage glitching

▪ EMFI/BBI glitching

◼ Goals

▪ Bypass a security check → e.g. Bootloader

▪ Bypass authentication → e.g. Login

▪ Fault analysis

22

EXAMPLE ATTACK AGAINST THE BOOTLOADER

◼ Attack on MediaTek MT8163V system-on-chip

▪ used in Android tablets

◼ source: https://research.nccgroup.com/2020/10/15/theres-a-hole-in-your-soc-glitching-the-mediatek-

bootrom/

https://research.nccgroup.com/2020/10/15/theres-a-hole-in-your-soc-glitching-the-mediatek-bootrom/
https://research.nccgroup.com/2020/10/15/theres-a-hole-in-your-soc-glitching-the-mediatek-bootrom/

23

EXAMPLE ATTACK AGAINST THE BOOTLOADER

◼ UART for behaviour

monitoring (valid boot image

versus invalid boot image)

→ Timing information

◼ FPGA for precise timing of

voltage glitching

◼ Chip Whisperer for voltage

glitching of bootloader

◼ Hardware costs below €500

24

EXAMPLE ATTACK AGAINST THE BOOTLOADER

◼ Timing analysis of boot process

▪ → successful vs unsuccessful boot

◼ Verification takes about 700ms

▪ time frame for glitching

▪ start time calculated via last bytes of

bootloader image

▪ exact glitch timing brute forced

▪ verification via change of debug string

▪ in the end, success rate of 25%

reached

25

TRUSTED EXECUTION ENVIRONMENTS

◼ What most people believe it is:

→„Processor feature“ or „Secure place in your hardware“ (like

HSM/Secure Element)

◼ TEE is…

▪ Not a specific component, but multiple hardware & software components

▪ Not a feature that can be switched on or off

▪ Typically not made by a single manufacturer

◼ Purpose:

▪ Protect TEE world form the Normal world (REE world)

▪ Protect trusted applications (TAs) from

• REE & other TAs

26

TRUSTED EXECUTION ENVIRONMENTS

◼ Example ARMs TrustZone

◼ Software adds flexibility (e.g.
Update in the field)

◼ Hardware enforces separation

▪ → NS bit is everything that
hinders access to TEE
memory

▪ Can only be set in S-EL3
“Monitor Mode”

◼ Communication over SMC calls
(not in user mode/EL0)

https://embeddedbits.org/introduction-to-trusted-execution-environment-tee-arm-

trustzone/

TEE

27

TEE – SEPARATION VIA THE NS-BIT

◼ Dedicated hardware components enforce
access policy

▪ TZASC… TZ Address Space Controller

▪ TZPC… TZ peripheral controller

▪ TZMA… TZ Memory Adapter

◼ Check if NS-bit=0 to grant access to certain
hardware parts

◼ Pitfall: misconfiguration of access table in
hardware and TEE monitor software (needs
to be the same) → Otherwise REE can let
TEE read/write secure memory

https://www.researchgate.net/figure/Components-of-ARM-TrustZone_fig1_304123847

28

TEE THREAT MODEL

◼ REE to

▪ HW, TEE OS, TAs

◼ TA to

▪ HW, TEE OS, Other TAs

◼ Physical attacks, e.g. DMA attack

→ Not in scope of TEE threat model

https://embeddedbits.org/introduction-to-trusted-execution-environment-tee-arm-

trustzone/

29

HOW TO EVALUATE THE TEE?

◼ Check configuration documentation (HW vs. SW)

◼ Check for known exploits (OSINT)

◼ Fuzzing of TA/Trusted OS functionality

◼ If interfaces are available:

▪ Write dedicated test code (TA)

▪ Dedicated tests targeting TA functionality

30

Physical Security

31

PROBING OF DATA BUSES

◼ Eavesdropping on internal

communication (e.g. CPU memory)

◼ Scratch the surface with a needle or

knife and contact it

◼ Also possible on IC die-level but out of

scope for IoT

◼ Goals

▪ Extraction of unencrypted firmware

during booting

▪ Read keys or configuration

▪ Insertion of faults

32

SECURITY REVIEW PCB DESIGN

◼ Many of the (potential) weaknesses, security vulnerabilities, and

design flaws of a product are identified when reviewing the PCB

◼ How difficult to access the PCB, busses and components?

▪ More difficult means more time and/or more samples

◼ Physical access

▪ Blocked PCB physical access with secure mechanical cover

▪ Compromise detection used (open case detection, seal the PCB)

◼ → not exactly Kerckhoffs's principle

33

SECURITY REVIEW PCB DESIGN

PCB DESIGN TECHNIQUES

◼ PCB design techniques/rules

▪ Dense PCB design

▪ Power lines have buffers (capacitors) → place as close as possible to ICs

▪ Wires

• place as shortly and directly as possible

• Critical traces placed in the inner layers

• Differential lines designed parallel (cf. figure, also in case if they are on separate

layers)

▪ (multiple-) Ground layers sandwiched for the sensitive traces with EM

radiation (EMI shielding)

▪ Vias

• Buried and/or blind vias used when it is possible →

• Buried via with nonconductive via fill →

▪ Unnecessary test points and programming headers removed

▪ Fake test points, components placed

▪ One-time solder paste used

34

SECURITY REVIEW PCB DESIGN

COMPONENTS

◼ Components

▪ IC-s (µC, memory etc.) with enabled security features (secure boot,

authentication etc.)

▪ Components which have limited availability access to the datasheet

• Custom design IC-s

▪ Black out chip label or IC markings removed or changed

▪ Physical access

• Advantageous packaging

▪ Ball Grid Array (BGA) packaging, Chip-on-Board (COB)

▪ Embed IC-s inside the PCB, (layer stackup) applied, Chip-In-Board (CIB)

• Epoxy/molding mass around package

• Embedded planar capacitor used (buried capacitors)

35

HOW TO EVALUATE THE PCB DESIGN?

◼ Check design rule suggestions

◼ Grade how difficult it is to…

▪ Open

▪ Identify

▪ Probe

▪ Remove

…certain components

36

Interfaces & Memories

37

DEBUG INTERFACES & CONFIGURATION PORTS

◼ Design-for-Security vs. Design-for-Testability

▪ PCB test points

▪ Unsoldered pins

• Config ports/management ports

• Debugging interfaces

• UART, SPI, JTAG,…

• Open debug ports

▪ What can you do with it?

▪ Read/write internal state (e.g. keys)

▪ Basically controlling the device

▪ Strategy considered to permanently remove test functionality?

◼ Configuration ports

▪ Might get a CLI →

▪ Standard passwords?

▪ More privileges/functions

Spring contact test points

Unsoldered pins

38

INTERFACE ANALYSIS

◼ Interface complexity can differ highly

◼ Example automotive:

▪ CAN bus

• easy to access, 2 resistors and lines to connect to

• simple electronics to retrieve and send signals

▪ FlexRay

• time sensitive bus system

• special hardware to connect to

▪ equipment usually FPGA based, and expensive

• configuration details required to properly decode messages

◼ Complete interface analysis required for additional attacks

▪ fuzzing

39

INTERFACE ANALYSIS – CAN BUS EXAMPLE

◼ Access requires only two 120

Ohm resistors

◼ Once the ECU is stable, one

can analyse the traffic

▪ getting to the stable state is

hard

◼ CAN messages are ID + max.

8 bytes

http://illmatics.com/car_hacking_poories.pdf

http://illmatics.com/car_hacking_poories.pdf

http://illmatics.com/car_hacking_poories.pdf
http://illmatics.com/car_hacking_poories.pdf

40

CONFIGURATION INTERFACE EXAMPLE - UART

◼ Simple serial interface

▪ 2 lines (RX/TX) + VDD +GND

◼ Baud rate requires configuration

◼ Simple connectors available

▪ UART to USB

◼ How to determine pin layout?

▪ VDD/GND → shape of pins

▪ brute force

http://www.devttys0.com/2012/11/reverse-engineering-serial-ports/

http://www.devttys0.com/2012/11/reverse-engineering-serial-ports/

41

DEBUG INTERFACE - JTAG

◼ Officially 4 + 1 pins

◼ no official protocol

◼ no official connector

▪ ARM 10 or 20 pin, ST 14 pin, OCDS 16 pin

◼ JTAG has a very simple state machine

▪ true power comes with a debug interface in

between

https://blog.senr.io/blog/jtag-explained

https://blog.senr.io/blog/jtag-explained

42

JTAG SIGNALS

◼ TCK

▪ clock

◼ TMS

▪ mode select

via voltage

◼ TDI / TDO

▪ data in and out

◼ TRST

▪ optional to reset to “good”

state

https://blog.senr.io/blog/jtag-explained

https://blog.senr.io/blog/jtag-explained

43

JTAG - SOFTWARE DEBUGGER

◼ Theoretically: Physical access to JTAG state machine is all you need

▪ → easy: 4 pins, simple basic commands to influence state machine

▪ but takes a lot of time to implement debug functionality

▪ requires knowledge of internal chip design

◼ => Get access via software debugger, like OpenOCD

▪ open source knowledge base for JTAG interfaces

▪ huge collection of chips and interfaces

◼ What does OpenOCD ideally unlock?

▪ code execution

▪ memory access

▪ breakpoint access

▪ complete debugging access via gdb

44

EVALUATION OF DEBUG INTERFACES

◼ Hardware tool to brute force

UART and JTAG pin layout

▪ VDD/GND is required first

→ quite easy to find

▪ 24 channels to analyse

▪ open source hardware

◼ Check if we have access to

JTAG FSM

◼ Usually no further tests

required → open debug port

is critical https://www.adafruit.com/product/1550

https://www.adafruit.com/product/1550

45

NON-VOLATILE MEMORY INTERFACES

◼ Non-volatile memory holds:

▪ Bootloader code

▪ Firmware (encrypted, signed, roll-back protection?)

▪ Configuration

▪ Root-of-Trust? (keys, e.g. for Boot Loader)

◼ Attacks

▪ Firmware manipulation, downgrading attacks

▪ Reading static secrets

▪ Changing configuration

◼ Better solutions

▪ Different packages (BGA)

▪ Use SoC design → less accessible

▪ Dedicated secure memory/OTP for RoT

NAND Flash

(parallel interface)

Serial EEPROM

Memory programmer

46

VOLATILE MEMORY INTERFACES

◼ Volatile memory (RAM) holds:

▪ Program code and data during execution

▪ Possibly security critical information (keys)

◼ Attacks

▪ Probing… harder than with Flash/EEPROM (more pins, higher frequencies)

• gets harder if a less-accessible package is used (e.g. BGA)

▪ Cold boot attacks: if cooled, data persists > 1 hour in memory

→ read out after power was plugged

◼ Mitigations

▪ SoC design makes probing harder

▪ Memory encryption
DRAM in

BGA package

DRAM in

SOJ-40 package

47

FIRMWARE AND CONFIGURATION CORRUPTION

◼ Read/write firmware possible?

◼ Check if secure boot is enabled/used?

◼ Does the device detect changes to the firmware/configuration?

▪ Can we load an old firmware image?

◼ How does it react?

48

FIRMWARE ANALYSIS

◼ Active field of research

◼ Static/dynamic code analysis requires source code (which is usually

not available for IoT devices)

◼ → most of the time, it ends in reverse engineering

◼ Gathered information from firmware/source code image analysis

▪ Which tools in use, programs running → known vulnerabilities

▪ high level languages in use

▪ library versions

49

REVERSE ENGINEERING TOOLS

◼ binwalk

▪ find filetypes in image blobs

• also recognizes compression

• images, text files, file systems, etc.

▪ entropy analysis (encrypted/compressed image?)

◼ radare2

▪ reverse engineering framework

▪ disassembler with large architecture support

▪ includes debugger support and scripting via python etc

◼ Ghidra

▪ free and open source reverse engineering tool by NSA

▪ alternative to IDA Pro

▪ supports partly ASM to C/C++ compilation

50

GHIDRA EXAMPLE
#include <stdio.h>

int main(void)

{

 int a = 42;

 int b = 23;

 printf("Hello, %d\n", a+b);

 return 0;

}

51

GHIDRA FOR EVALUATION

◼ Analyse/reverse engineer firmware → of course

But also…

◼ Find static credentials

▪ Hardcoded username/password

▪ Private keys

▪ URLs/IPs

◼ Identify exploitable functions

▪ E.g. memcopy-vehicle in TEE

◼ Manipulate the code, e.g. redirect to own server

52

BLUETOOTH LOW ENERGY

◼ Different markets addressed

▪ low power (months or years on a button cell)

▪ small size, low cost

▪ compatibility with phones, tablets, computers

◼ 40 channels in BL frequency range (2.4 GHz)

▪ 3 advertising channels

▪ channel hopping simple to follow

• allows sniffing

◼ Client / server architecture

▪ IoT device is the server hosting services

▪ Phone acts as a client requesting services

▪ only one client per server at a time

53

BLUETOOTH LOW ENERGY CONNECTION FLOW

1. Server (IoT device) advertises regularly on advertisement channels

→ device name, service UUIDs, …

2. Client sends CONNECT_REQ

→ frequency hopping sequence, connection interval, slave latency, supervision

timeout, …

→ after this packet, the connection is established, server is seen as slave, client

as master

3. Client can use host layer via GATT (Generic Attribute Profile)

→ write, read, notify, subscribe, …

54

BLE SECURITY

◼ BLE can be encrypted via AES-128

▪ Cipher Block Chaining-Message Authentication Code (CCM) Mode

◼ Devices must first pair

▪ how is the key exchanged?

▪ discovery and connection process are always unencrypted

◼ In practice?

▪ hardly any IoT device gets this right (hardcoded keys, …)

▪ or doesn’t use encryption at all

◼ Sniff and fuzz to evaluate

55

BLE SECURITY TESTING

▪ Hardware for BLE testing is cheap

• https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52840-DK

• https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52840-

Dongle

▪ Enumeration can be done via mobile phone or with above HW

• https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp

• https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-

for-desktop

▪ Sniffing tool available as Wireshark plugin

• https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Sniffer-

for-Bluetooth-LE

▪ MITM tools available online as free software

• https://github.com/securing/gattacker

https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52840-DK
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52840-Dongle
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52840-Dongle
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-desktop
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-desktop
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Sniffer-for-Bluetooth-LE
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Sniffer-for-Bluetooth-LE
https://github.com/securing/gattacker

Secure Product Lifecyle

Penetration Testing for IoT Devices –

A Hardware Evaluator’s Perspective

	Intro
	Folie 1

	Introduction to IoT Pentesting
	Folie 2: Last weekS…
	Folie 3: Literature
	Folie 4: Examples of IoT Hacks
	Folie 5: Target of Evaluation (TOE)
	Folie 6: Whitebox VS. Blackbox testing
	Folie 7

	IoT Evaluation Flow
	Folie 8: IOT Hardware analysis flow
	Folie 9: 1. Identification of samples
	Folie 10: 2. Open Source Intelligence Analysis (OSINT)
	Folie 11: 3. Remove Casing – Getting Into the Device
	Folie 12: 4. Component identification
	Folie 13: 5. Penetration tests
	Folie 14

	Root of Trust
	Folie 15: Root of Trust
	Folie 16: hardware root of trust
	Folie 17: How to evaluate „Root of Trust“?

	Bootloader
	Folie 18: Secure Boot
	Folie 19: Secure Boot Summary
	Folie 20: How to TEst the BOOTLOADER?
	Folie 21: Glitching of security countermeasures
	Folie 22: EXAMPLE Attack against the bootloader
	Folie 23: EXAMPLE Attack against the bootloader
	Folie 24: EXAMPLE Attack against the bootloader

	Trusted Execution Environment
	Folie 25: Trusted Execution environments
	Folie 26: Trusted Execution environmEnts
	Folie 27: TEE – Separation via the NS-Bit
	Folie 28: TEE Threat Model
	Folie 29: How to evaluate the TEE?

	Physical security
	Folie 30
	Folie 31: Probing of data buses
	Folie 32: Security review PCB design
	Folie 33: SECURITY REVIEW PCB DESIGN PCB design TECHNIQUES
	Folie 34: SECURITY REVIEW PCB DESIGN Components
	Folie 35: How to evaluate the PCB DESIGN?

	Debug and Configuration Interfaces
	Folie 36
	Folie 37: Debug interfaces & configuration ports
	Folie 38: Interface analysis
	Folie 39: Interface analysis – CAN BUS example
	Folie 40: Configuration Interface example - UART
	Folie 41: debug interface - JTAG
	Folie 42: JTAG signals
	Folie 43: JTAG - Software Debugger
	Folie 44: EVALUATION OF debug interfaces

	Memories
	Folie 45: Non-volatile Memory interfaces
	Folie 46: VOLATILE Memory interfaces
	Folie 47: Firmware and configuration corruption

	Firmware Analysis
	Folie 48: Firmware Analysis
	Folie 49: reverse engineering tools
	Folie 50: Ghidra example
	Folie 51: GHIDRA for EVALUATION

	Wireless Interfaces
	Folie 52: Bluetooth low energy
	Folie 53: Bluetooth low energy connection flow
	Folie 54: BLE security
	Folie 55: BLE security testing

	End
	Folie 56

