YA
SO
B.A

[w] www.yagoba.com, [m] info@yagoba.com
BeethovenstraRe 20, 8010 Graz, Austria

Secure Product Lifecyle

Penetration Testing for 10T Devices —
A Hardware Evaluator's Perspective

WHEN YOU NEED TO BE SURE

Christoph Herbst

LAST WEEKS...

W Security testing: Mobile Apps
= Vulnerabilities and testing of mobile apps
= White/Grey/Blackbox = we will revisit this part
= Static analysis versus dynamic analysis
= OWASP: MASVS (verification standard) and MASTG (testing guide)
= OWASP Top 10 for mobile devices
= Examples

W |oT security is not just mobile (app) security and network/web
penetration testing

—> This lecture focuses on 10T in general with a special focus on HW

A
S0

=.A

LITERATURE

Marcel Kippers and Sebastian Bicchi, ,Praktische Einfiihrung in Hardware
Hacking - Sicherheitsanalyse und Penetration Testing fur loT-Geréate und
Embedded Devices®, MITP, Dec. 2019

Praktische Einfihrung in

- Hardware Hacking

und Penetration Testing

v [T Hacking
= Andrew Huang, ,Hacking the Xbox - An Introduction to Reverse the Xbox

Engineering®, No Starch Press, Inc., 2003
https://nostarch.com/xboxfree

The

Car Hacker's

Handbook
A buidefor the Penettion Tster Craig Smith, ,The Car Hacker's Handbook: A Guide for the

Penetration Tester” , No Starch Press, Inc., 2016

https://nostarch.com/xboxfree

EXAMPLES OF I0T HACKS

“Hackers Remotely
Kill a Jeep on the
Highway” (2015)

=%
L E

| Kaiji Botnet uses automated
atttacks against SSH to infect

0T devices (2020)

Insurance company refuses to pay after car

hack via ,,Keyless Go* system
—> court confirms rightfulness (2020)

,,Hello Barbie* — Insufficient security

“Hackers are hijacking

smart building access allows hackers to: eavesdrop & speak
systems to launch over the Internet (2015)

DDoS attacks™ (2020)

A,
S0
B.A

TARGET OF EVALUATION (TOE)

WHITEBOX VS. BLACKBOX TESTING

B Blackbox

= Tester gets same (public) information as a consumer
= Unknown algorithm details and countermeasures

= Samples same/similar to product

= No further support from developer

GREY BOX

B Whitebox

= Tester has in-depth knowledge about internals
= Algorithms and countermeasures declared and described in detail
= Samples prepared for testing (opened, added functionality)

- = Support from developer

S = = More common in high-security domains
B=.a

SGS.

loT Hardware Evaluation Flow

IOT HARDWARE ANALYSIS FLOW

|dentification of samples
OSINT analysis
Remove casing

Component identification

a ~ W D E

Penetration tests

a) Security review PCB design

b) Debug interfaces & configuration ports

c) Memory interfaces

d) Firmware and configuration corruption

e) Glitching of security countermeasures

f) Probing of data buses

g) Interfaces tests (secure comm., analysis, attacks)
... up to dedicated device tests

YA

S0
=.A

https://sec-consult.com/en/blog/2019/02/reverse-

engineering-architecture-pinout-plc/
—> Intersting article

A
S0

B=.a

1. IDENTIFICATION OF SAMPLES

Check that what you are trying to test is actually
the TOE that is intended to be tested!

Depends on device that you test (e.g. label on
device, or device output at start-up 2>
identification and version)

Sounds trivial but if you perform the evaluation
on the wrong device there is lots of work done
without any use

https://sec-consult.com/en/blog/2019/02/reverse-engineering-architecture-pinout-plc/
https://sec-consult.com/en/blog/2019/02/reverse-engineering-architecture-pinout-plc/

2. OPEN SOURCE INTELLIGENCE ANALYSIS (OSINT)

® Exploring the publicly available data sources
= Data sheets and user manuals
= Firmware if available
= Reports and blogs
= Papers, etc.
= Specific search engines

¥ Information gathered
= Use cases and technologies
= Interface descriptions
= Hardware structure & components
= Data flow diagrams
= Known attacks & standard passwords

YA

S0
=.A

¥ - Make the black box a bit more greyish

3. REMOVE CASING — GETTING INTO THE DEVICE

® Can be very trivial or very complex

B Sometimes considered as part of the physical security of the device
= Limited testing time!

® Destruction not always an option
= Limited samples
= Some tests/attacks required an open and working sample

- m Goal: get to the electronic parts
S0

=.A

4. COMPONENT IDENTIFICATION

Starting point: limited information on internal electronic parts

Denote all main electronic components

= SoCs

= CPUs, uCs b
= e IR 1

= Memory ICs iy =

= Debug & config ports o 1 (@[0 e o] FR

= Disconnected interfaces =

= Everything that could be security relevant
e.g. suspicious or undocumented interface

- Back to OSINT (update information)

Output: list of components with an assessment of possible
security impact

A
S0

=

5. PENETRATION TESTS

Do whatever an attacker does...

Inputs

= Information from Component ldentification
= OSINT

Create a test plan

Keep in mind for planning:

Scope (what was agreed on with customer?)
Limited available time (up to this point already consumed >2-3 days)
HW pentests are not the only tests to be run (network pen testing, mobile app tests)

Attack potential for 10T (basic to substantial)
= What tests are the most critical ones (low-hanging fruits for an attacker)?
= Hardware reverse engineering and bespoke equipment is usually out of scope

Coverage

13

SGS.

Hardware Pentesting Examples

14

RoT

ROOT OF TRUST
What is a Root of Trust?

Foundation for all security related functions
= e.g. Boot Loader relies on RoT for loading firmware image

Examples
= Hardcoded credentials (passwords) - not a good idea
= Hardware security module (HSM)
= Secure memory (one-time writable, limited access)
= Physically unclonable functions

Assume to be secure during evaluation
= verify it, if possible

Often hardware security modules seen as RoT
= trusted execution environment (TEE) - actually not a module
= execution of cryptographic functions (signature, de- and encryption)

15

HARDWARE ROOT OF TRUST

W Threat model/scope
= Physical attacks in scope?

W Tamper resistance
= how is it achieved?
= E.g. on-chip voltage regulators, attack sensors, redundancy, error counters...

W Security perimeter
= What needs to be protected? What relies on the RoT?
= Primary assets (e.g. user data, firmware, IPS)
= Secondary assets (e.g. cryptographic keys)
= Countermeasures & components rely on RoT

® (True) random number generators

= Lots of countermeasures and cryptographic functions depend on (T)RNG
= Different classes: PTRG.1-3, DRG.1-4 - different use cases
= Check soundness through online tests

A,
S0
=.A

16

HOW TO EVALUATE ,ROOT OF TRUST™?

B Check that assumptions on RoT are meaningful & consistent

= e.g. External flash assumed to be secure memory for static passwords
- not a good idea ®

= RNG class suitable

® Check for tamper resistance if in scope
= E.g. glitching, underpowering

W Usually no direct tests on RoT
= - no interface provided to test assumptions (cf. CC evaluations)

A
S0

=.A

17

A
S0

=.A

SECURE BOOT

Security feature of many embedded devices

Integrity & authenticity of code and data stored in non-volatile storage
Often replay/downgrading protection

Bring the system to a defined & secure state after start-up

—> if secure boot can be bypassed the whole system can be compromised

Implemented on a wide variety of devices

E.g. phones, TVs, automotive, routers, consoles etc.

Hard to analyse and often unexplored

Complex and tight hardware & software interaction
High privileged functionality implemented at the lower levels

All Secure boot implementations are

different but lots of similarities

18

A
S0

=.A

SECURE BOOT
SUMMARY

Became a common chip feature
Requires hardware to be secure (RoT)
Relies on (strong) cryptographic primitives

Must verify all code and data
= To bring system into a defined secure state

Breaking Secure Boot early usually grants higher privileges
= Key, ROM code, Countermeasures, HW protection, Code execution

19

HOW TO TEST THE BOOTLOADER?

Change firmware image -> see if bootloader reacts at all

Perform glitching attacks (next slide)

Try other ways to overcome bootloader
= E.g. TOCTOU (time of check/time of use) attacks
= - Change flash image after check

Full key extraction of NVIDIA TSEC:
https://gist.githubusercontent.com/plutooo/733318dbb57166d203cl

A,
EE 0d12f6c24e06/raw/15¢c5b2612ah62998243ce5e7877496466cabb77
flisec.txt

https://gist.githubusercontent.com/plutooo/733318dbb57166d203c10d12f6c24e06/raw/15c5b2612ab62998243ce5e7877496466cabb77f/tsec.txt
https://gist.githubusercontent.com/plutooo/733318dbb57166d203c10d12f6c24e06/raw/15c5b2612ab62998243ce5e7877496466cabb77f/tsec.txt
https://gist.githubusercontent.com/plutooo/733318dbb57166d203c10d12f6c24e06/raw/15c5b2612ab62998243ce5e7877496466cabb77f/tsec.txt

GLITCHING OF SECURITY COUNTERMEASURES

m Different ways to glitch a device

W Goals

A,
S0
=.A

Changing environmental conditions (heat/cool)
Flashlight (cheap & powerful EM source)
Clock glitching

(Supply) voltage glitching

EMFI/BBI glitching

Bypass a security check - e.g. Bootloader
Bypass authentication - e.g. Login
Fault analysis

21

m EXAMPLE ATTACK AGAINST THE BOOTLOADER

W Attack on MediaTek MT8163V system-on-chip
= used in Android tablets

Secure World BootROM ——»| Preloader | Trust Zone

Normal World > LK —> Linux

A
S0
=.A

B source: https://research.nccqgroup.com/2020/10/15/theres-a-hole-in-your-soc-glitching-the-mediatek-
bootrom/

https://research.nccgroup.com/2020/10/15/theres-a-hole-in-your-soc-glitching-the-mediatek-bootrom/
https://research.nccgroup.com/2020/10/15/theres-a-hole-in-your-soc-glitching-the-mediatek-bootrom/

SGS.

B UART for behaviour

monitoring (valid boot image

versus invalid boot image)

= Ti

ming information

® FPGA for precise timing of
voltage glitching

m C
gl

~Nr A
=00
B=B.A

hip Whisperer for voltage
itching of bootloader

1.8v UART

capture target output |

to PC

Raspberry PI

control USB power
supply

UART TX
i

USB cable

| Veek_pmu

EXAMPLE ATTACK AGAINST THE BOOTLOADER

ChipWhisperer

z“are costs below €500

Target <

eMMC CLK, DATO

v

FPGA

monitor eMMC and
send glitch trigger

insert voltage
glitches

Glitch trigger

23

SGS.

® Timing analysis of boot process

- successful vs unsuccessful boot

® Verification takes about 700ms

A
S0

=.A

time frame for glitching

start time calculated via last bytes of
bootloader image

exact glitch timing brute forced
verification via change of debug string

In the end, success rate of 25%
reached

EXAMPLE ATTACK AGAINST THE BOOTLOADER

+0.225 +0.33s +0.445 +0.555 +0.665 +0.77s +0.885 +0.99s +1.10s

IIITIIIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIHII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIII

24

TRUSTED EXECUTION ENVIRONMENTS

¥ What most people believe it is:

- ,Processor feature” or ,Secure place in your hardware” (like
HSM/Secure Element)

m TEE s...

Not a specific component, but multiple hardware & software components
= Not a feature that can be switched on or off

®
-) TrustZone
= Typically not made by a single manufacturer

System Security by ARM

® Purpose:

A,
S0
=.A

Protect TEE world form the Normal world (REE world)

= Protect trusted applications (TAS) from
 REE & other TAs

25

Example ARMs TrustZone
Software adds flexibility (e.g.

Update in the field)

Hardware enforces separation

- NS bit is everything that
hinders access to TEE
memory

Can only be set in S-EL3
“Monitor Mode”

Communication over SMC calls

(not in user mode/ELO)

A,
S0
=.A

TRUSTED EXECUTION ENVIRONMENTS

Non-Secure World

Rich Execution Environment

Untrusted

{ |untrusted
' App

App

Untrusted
App

Embedded 0S

Secure World

Trusted Execution Environmenté'

Trust
App

Trusted
App

ed Trusted
App

Trusted 0S

Protected Hardware
Resources

https://embeddedbits.org/introduction-to-trusted-execution-environment-tee-arm-

trustzone/

26

TEE — SEPARATION VIA THE NS-BIT

® Dedicated hardware components enforce
access policy

= TZASC... TZ Address Space Controller Normal World '+ Secure World |
= TZPC... TZ peripheral controller Ty i o |i
= TZMA... TZ Memory Adapter | |
coRe Lo vode] §
® Check if NS-bit=0 to grant access to certain U | MonitorMode |}
hardware parts {
B Pitfall: misconfiguration of access table in < 5 ﬁ’m —) :>
hardware and TEE monitor software (needs
TZASC AXl-to-APB TZMA

to be the same) - Otherwise REE can let g)
TEE read/write secure memory g g

pRAN! TZPC —-|_|_ - SRAM
peripherals

https://www.researchgate.net/figure/Components-of-ARM-TrustZone_figl_ 304123847

A
S0

=.A

TEE THREAT MODEL

B REEtO
= HW, TEE OS, TAS
Non-Secure World Secure World

E'E__'__'___'__'__f__'__'__f__'__'__f__'__'__f__'__'__f__'__'___'__'__f__'__'__?_?_!_f_!!_f_!_f_f_!.f: . TA tO
Rich Execution Environment E Trusted Execution Environment ' . HW, TEE OS, Other TAS

Untrusted E :é T Trusted Trusted
App ; = App App

Trusted 0S

i |Untrusted
' App

® Physical attacks, e.g. DMA attack

Protected Hardware
Resources

P
S0
= P

its org/introduction-to-trusted-execution-environment-tee-arm-
trustzone/

- Not in scope of TEE threat model

28

A
S0
=.A

HOW TO EVALUATE THE TEE?

Check configuration documentation (HW vs. SW)

Check for known exploits (OSINT)

Fuzzing of TA/Trusted OS functionality

If interfaces are available:
= Write dedicated test code (TA)
= Dedicated tests targeting TA functionality

29

SGS.

Physical Security

30

A
S0

B=.a

PROBING OF DATA BUSES

Eavesdropping on internal
communication (e.g. CPU < memory)

Scratch the surface with a needle or
knife and contact it

Also possible on IC die-level but out of
scope for 10T

Goals

= Extraction of unencrypted firmware
during booting

= Read keys or configuration
= |nsertion of faults

31

SECURITY REVIEW PCB DESIGN

Many of the (potential) weaknesses, security vulnerabllities, and
design flaws of a product are identified when reviewing the PCB

How difficult to access the PCB, busses and components?
= More difficult means more time and/or more samples

Physical access
= Blocked PCB physical access with secure mechanical cover
= Compromise detection used (open case detection, seal the PCB)

- not exactly Kerckhoffs's principle

32

SECURITY REVIEW PCB DESIGN
PCB DESIGN TECHNIQUES

PCB design techniques/rules
= Dense PCB design
= Power lines have buffers (capacitors) - place as close as possible to ICs
= Wires
« place as shortly and directly as possible

» Critical traces placed in the inner layers

« Differential lines designed parallel (cf. figure, also in case if they are on separate
layers)

= (multiple-) Ground layers sandwiched for the sensitive traces with EM
radiation (EMI shielding)

= Vias
« Buried and/or blind vias used when it is possible -
« Buried via with nonconductive via fill >
+ A)ﬁnn sary test points and programming headers removed
= t points, components placed
B.5 solder paste used

Through Via | Tented Via Blind Via

SECURITY REVIEW PCB DESIGN
COMPONENTS

® Components

= IC-s (LC, memory etc.) with enabled security features (secure boot,
authentication etc.)
= Components which have limited availability access to the datasheet
* Custom design IC-s

= Black out chip label or IC markings removed or changed

= Physical access

« Advantageous packaging
= Ball Grid Array (BGA) packaging, Chip-on-Board (COB)
= Embed IC-s inside the PCB, (layer stackup) applied, Chip-In-Board,(
» Epoxy/molding mass around package ‘

 Embedded planar capacitor used (buried capacitors)

A
S0
=.A

34

HOW TO EVALUATE THE PCB DESIGN?

® Check design rule suggestions

B Grade how difficult it is to...

’_|I_‘ = Open
"\; = |dentify

1 = Probe
LA = Remove

...certain components

A
S0
=.A

35

SGS.

Interfaces & Memories

36

Unsoldered pins

YA

S0
=.A

DEBUG INTERFACES & CONFIGURATION PORTS

= PCB test points

Unsoldered pins
» Config ports/management ports
» Debugging interfaces
« UART, SPI, JTAG,...
« Open debug ports

= What can you do with it?

= Read/write internal state (e.g. keys)

= Basically controlling the device

= Strategy considered to permanently remove test functionality?

® Configuration ports
= Might geta CLI -2
= Standard passwords?
= More privileges/functions

37

_SGS
"

A
S0

=.A

INTERFACE ANALYSIS

® Interface complexity can differ highly

¥ Example automotive:

= CAN bus
» easy to access, 2 resistors and lines to connect to
« simple electronics to retrieve and send signals

= FlexRay
» time sensitive bus system

» special hardware to connect to
= equipment usually FPGA based, and expensive

« configuration details required to properly decode messages

® Complete interface analysis required for additional attacks
= fuzzing

38

INTERFACE ANALYSIS — CAN BUS EXAMPLE

® Access requires only two 120
Ohm resistors

B Once the ECU is stable, one
can analyse the traffic

= getting to the stable state is
hard

® CAN messages are ID + max.
8 bytes

http://illmatics.com/car_hacking poories.pdf

IDH: 00, IDL: 81, Len: 08, Data: F9 5C 01 00 00 00 00 0O
IDH: 00, IDL: 81, Len: 08, Data: F9 5C 01 00 00 00 00 0O
IDH: 00, IDL: 81, Len: 08, Data: F9 5C 01 00 00 00 00 0O
IDH: 00, IDL: 81, Len: 08, Data: F9 5C 01 00 00 00 00 OO

http://illmatics.com/car_hacking_poories.pdf

A
S0

=.A

http://illmatics.com/car_hacking_poories.pdf
http://illmatics.com/car_hacking_poories.pdf

A
S0

=.A

CONFIGURATION INTERFACE EXAMPLE - UART

Simple serial interface

Baud rate requires configuration

2 lines (RX/TX) + VDD +GND

Simple connectors available

UART to USB

How to determine pin layout?

VDD/GND - shape of pins
brute force

Lol Rezs
= Rieqt

C1519

RP706
[N
mR78 s1ssur’ms192 §

Riq4g ..
Il
FO

|
543

................

............

CIR4

http://www.devttys0.com/2012/11/reverse-engineering-serial-ports/

40

http://www.devttys0.com/2012/11/reverse-engineering-serial-ports/

m Officially 4 + 1 pins
® no official protocol

B no official connector
= ARM 10 or 20 pin, ST 14 pin, OCDS 16 pin

® JTAG has a very simple state machine

= true power comes with a debug interface in
between

A,
S0
B.A

DEBUG INTERFACE - JTAG

https://blog.senr.io/blog/jtag-explained

41

https://blog.senr.io/blog/jtag-explained

m TCK
= clock

m TMS

= mode select
via voltage

m TDI/TDO
= data in and out

®m TRST

= optional to reset to “good”
state

A
S0

=.A

JTAG SIGNALS

Device 1
,

7
s
™S ———————————— T
! v v v : w
TDI —{ TOI ™S TDO » TDI ™S TDO - TOI TMS TDO : - TDI TMS TDO
ARM core 1 ARM core 2 ARM core 3 | Device 2
JTAG ! being debugged :
connector i TCK TCK TCK ! TCK
: i
TeK 4 4 A 4
TDO |4

Tarqget: Two devices connected in the JTAG chain

https://blog.senr.io/blog/jtag-explained

42

https://blog.senr.io/blog/jtag-explained

A,
S0
=.A

JTAG - SOFTWARE DEBUGGER

Theoretically: Physical access to JTAG state machine is all you need
= - easy: 4 pins, simple basic commands to influence state machine
= but takes a lot of time to implement debug functionality
= requires knowledge of internal chip design

=> (Get access via software debugger, like OpenOCD
= open source knowledge base for JTAG interfaces
= huge collection of chips and interfaces

What does OpenOCD ideally unlock?

= code execution

" memory access

= breakpoint access

= complete debugging access via gdb

43

A
S0

=.A

EVALUATION OF DEBUG INTERFACES

Hardware tool to brute force
UART and JTAG pin layout

= VDD/GND is required first
-> uite easy to find

= 24 channels to analyse

= open source hardware

Check if we have access to
JTAG FSM

Usually no further tests
required - open debug port
IS critical

https://www.adafruit.com/product/1550

44

https://www.adafruit.com/product/1550

Serial EEPROM

NAND Flash
(parallel interface)

A
S0

=.A

NON-VOLATILE MEMORY INTERFACES

® Non-volatile memory holds:

Bootloader code

Firmware (encrypted, signed, roll-back protection?)
Configuration

Root-of-Trust? (keys, e.g. for Boot Loader)

W Attacks

Firmware manipulation, downgrading attacks
Reading static secrets
Changing configuration

B Better solutions

Different packages (BGA)
Use SoC design - less accessible
Dedicated secure memory/OTP for RoT

Memory programmer

45

-

DRAM in
S0J-40 package

DRAM in
BGA package

A
S0

=.A

VOLATILE MEMORY INTERFACES

® Volatile memory (RAM) holds:
= Program code and data during execution
= Possibly security critical information (keys)

W Attacks

= Probing... harder than with Flash/EEPROM (more pins, higher frequencies)
» gets harder if a less-accessible package is used (e.g. BGA)

= Cold boot attacks: if cooled, data persists > 1 hour in memory
—> read out after power was plugged

¥ Mitigations
= S0C design makes probing harder
= Memory encryption

46

Bootloader: mwB998-002.6075.62
Baseband: g8998-00253-1811291732
Product Revision: walleye NP1
3erial Number: FRB591A00497

JFS: 646D Hynix

DRAM: 4696MB Micron LPDDR4
Boot-slot: b

“onsole: DISABLED

3ecure Boot: yes (PRODUCTION)

Device State: unlocked _

A,
S0
=.A

FIRMWARE AND CONFIGURATION CORRUPTION

Read/write firmware possible?

Check if secure boot is enabled/used?

Does the device detect changes to the firmware/configuration?
= Can we load an old firmware image?

How does it react?

47

FIRMWARE ANALYSIS
Active field of research

Static/dynamic code analysis requires source code (which is usually
not available for IoT devices)

- most of the time, it ends in reverse engineering

Gathered information from firmware/source code image analysis
= Which tools in use, programs running > known vulnerabilities
= high level languages in use
= library versions

48

A
S0

=.A

REVERSE ENGINEERING TOOLS

B binwalk

= find filetypes in image blobs
» also recognizes compression
* images, text files, file systems, etc.

= entropy analysis (encrypted/compressed image?)

radare2
= reverse engineering framework
= disassembler with large architecture support
= Includes debugger support and scripting via python etc

W Ghidra
= free and open source reverse engineering tool by NSA
= alternative to IDA Pro
= supports partly ASM to C/C++ compilation

49

GHIDRA EXAMPLE

#include <stdio.h> 00101149 £3 0f le fa ENDER64
00101144 55 FUSH RBE

. . . 0010114e 43 59 e5 MOV RBP,RST
1nt main (VOld) 00101151 43 83 ec 10 SUB E5P,0x10
{ 00101155 c7 45 £3 MOV dword ptr [EEF + local 10],0x2a
int a = 42; 2a 00 00 00
int b = 23; 0010115c c7 45 fc MOV dword ptr [EEF + local_c],0xl7
printf("Hello, %d\n", a+b); 17 00 00 oo
return O,' 00101163 Sk 55 £3 MOV ED¥,dword ptr [EEF + local 10]
00101166 Sk 45 fc MOV EL¥,dword ptr [EEF + local c]
} 0010116% Q1 40 ADD ER¥,EDX
001l0llek 29 ce MOV ESI,ERX
00l0lled 4% 54 34 LER EDI, [8_Hello, %d 00102004]
S0 Oe 00 Q0
00101174 kB3 00 Q0 MOV EA¥, 0x0
0g a0
00101179 =3 42 fe CALL printf
ff ff
Decompile: main - (&@.out) ﬁ | ‘ | @ | ﬂ| * X 0010117= b2 00 00 MoV i, =0
0g a0
001011583 c5 LERVE
2 |lundefined? main(wvoid) 00101184 o3 BET

W el

Th

printf("Hello, %4d\n",0x41,0x2a);
return 07

[=1}

[&F]

A,
S0

=

® Analyse/reverse engineer firmware - of course
But also...

¥ Find static credentials
= Hardcoded username/password

= Private keys
= URLS/IPs

® Identify exploitable functions
= E.g. memcopy-vehicle in TEE

:gléi“ulate the code, e.g. redirect to own server
=

GHIDRA FOR EVALUATION

51

A
S0

=.A

BLUETOOTH LOW ENERGY

® Different markets addressed
= low power (months or years on a button cell)
= small size, low cost
= compatibility with phones, tablets, computers

® 40 channels in BL frequency range (2.4 GHz)
= 3 advertising channels

= channel hopping simple to follow
 allows sniffing

® Client / server architecture
= |oT device is the server hosting services
= Phone acts as a client requesting services
= only one client per server at a time

52

A,
S0
=.A

BLUETOOTH LOW ENERGY CONNECTION FLOW

1. Server (I0oT device) advertises regularly on advertisement channels
- device name, service UUIDs, ...

2. Client sends CONNECT_REQ

-> frequency hopping sequence, connection interval, slave latency, supervision
timeout, ...

—> after this packet, the connection is established, server is seen as slave, client
as master

3. Client can use host layer via GATT (Generic Attribute Profile)
—> write, read, notify, subscribe, ...

53

A
S0

=.A

BLE SECURITY

BLE can be encrypted via AES-128
= Cipher Block Chaining-Message Authentication Code (CCM) Mode

Devices must first pair
= how is the key exchanged?
= discovery and connection process are always unencrypted

In practice?
= hardly any loT device gets this right (hardcoded keys, ...)
= or doesn’t use encryption at all

Sniff and fuzz to evaluate

54

A,
S0

=

BLE SECURITY TESTING

Hardware for BLE testing is cheap

» https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52840-DK

« https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52840-
Dongle

Enumeration can be done via mobile phone or with above HW

» https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp

* https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-
for-desktop

Sniffing tool available as Wireshark plugin

* https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Sniffer-
for-Bluetooth-LE

MITM tools available online as free software
» https://github.com/securing/gattacker

55

https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52840-DK
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52840-Dongle
https://www.nordicsemi.com/Software-and-tools/Development-Kits/nRF52840-Dongle
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-desktop
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-desktop
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Sniffer-for-Bluetooth-LE
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Sniffer-for-Bluetooth-LE
https://github.com/securing/gattacker

YA
SO
B.A

[w] www.yagoba.com, [m] info@yagoba.com
BeethovenstraRe 20, 8010 Graz, Austria

Secure Product Lifecyle

Penetration Testing for 10T Devices —
A Hardware Evaluator's Perspective

WHEN YOU NEED TO BE SURE

	Intro
	Folie 1

	Introduction to IoT Pentesting
	Folie 2: Last weekS…
	Folie 3: Literature
	Folie 4: Examples of IoT Hacks
	Folie 5: Target of Evaluation (TOE)
	Folie 6: Whitebox VS. Blackbox testing
	Folie 7

	IoT Evaluation Flow
	Folie 8: IOT Hardware analysis flow
	Folie 9: 1. Identification of samples
	Folie 10: 2. Open Source Intelligence Analysis (OSINT)
	Folie 11: 3. Remove Casing – Getting Into the Device
	Folie 12: 4. Component identification
	Folie 13: 5. Penetration tests
	Folie 14

	Root of Trust
	Folie 15: Root of Trust
	Folie 16: hardware root of trust
	Folie 17: How to evaluate „Root of Trust“?

	Bootloader
	Folie 18: Secure Boot
	Folie 19: Secure Boot Summary
	Folie 20: How to TEst the BOOTLOADER?
	Folie 21: Glitching of security countermeasures
	Folie 22: EXAMPLE Attack against the bootloader
	Folie 23: EXAMPLE Attack against the bootloader
	Folie 24: EXAMPLE Attack against the bootloader

	Trusted Execution Environment
	Folie 25: Trusted Execution environments
	Folie 26: Trusted Execution environmEnts
	Folie 27: TEE – Separation via the NS-Bit
	Folie 28: TEE Threat Model
	Folie 29: How to evaluate the TEE?

	Physical security
	Folie 30
	Folie 31: Probing of data buses
	Folie 32: Security review PCB design
	Folie 33: SECURITY REVIEW PCB DESIGN PCB design TECHNIQUES
	Folie 34: SECURITY REVIEW PCB DESIGN Components
	Folie 35: How to evaluate the PCB DESIGN?

	Debug and Configuration Interfaces
	Folie 36
	Folie 37: Debug interfaces & configuration ports
	Folie 38: Interface analysis
	Folie 39: Interface analysis – CAN BUS example
	Folie 40: Configuration Interface example - UART
	Folie 41: debug interface - JTAG
	Folie 42: JTAG signals
	Folie 43: JTAG - Software Debugger
	Folie 44: EVALUATION OF debug interfaces

	Memories
	Folie 45: Non-volatile Memory interfaces
	Folie 46: VOLATILE Memory interfaces
	Folie 47: Firmware and configuration corruption

	Firmware Analysis
	Folie 48: Firmware Analysis
	Folie 49: reverse engineering tools
	Folie 50: Ghidra example
	Folie 51: GHIDRA for EVALUATION

	Wireless Interfaces
	Folie 52: Bluetooth low energy
	Folie 53: Bluetooth low energy connection flow
	Folie 54: BLE security
	Folie 55: BLE security testing

	End
	Folie 56

