Secure Product Lifecycle

Security Testing: Fuzzing

Srdan Ljepojevic

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Context

Motivation

What is fuzzing?
Advantages and Challenges
Fuzzing in Standards
Conclusion

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Planning

Decomissioning

Maintenance Analysis

Release Design

Implementation

e Testing

assessment

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Secure Development Lifecycle

* Secure update

» Document security * Developer training . Negative testin process
objectives * Threat modeling * Coding standards . & : * Vulnerability
* Secure * Secure design . Sec'ure code SSI?\\Z:abilities management
requirements review review . . * Security incident
review * Static code * Penetration testing response process
analysis

\—[Requirements]/ - / \—[Implementation . J \—[Deployment

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Testing is an important aspect of security assessments and certification

Why fuzzing?
CWE Top 25 in 2022
e |t
Rank ID Name Score | Count Vs
(CVEs) 2021
1 CWE-787 |OQut-of-bounds Write 64.20 62 0
2 CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 45.97 2 0
S — -
3 CWE-89 |Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 22.11 7 +3 A
4 | CWE-20 |Improper Input Validation 2063 | 20 | 0O
5 || CWE-125 |Out-of-bounds Read 1767 | 1 | 2 W
6 CWE-78 |Improper Neutralization of Special Elements used in an 05 Command ('O5 Command Injection')j 17.53 32 -1v
7/ CWE-416 |Use After Free I 15.50 28]
 — g

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

What bugs can you find with fuzzing?

CWE Top 2023

Rank
CVEs |Change
Rank D Name Score in KEV| vs.
2022
1 CWE-787 |Out-of-bounds Write 63.72 70 0
-
2 CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 45.54 4 0
3 CWE-89 |Improper Neutra||zat|on of SpeC|a| E|ements used in an SQL Commana E'SQL Injection’) 34.27 6 0
4 CWE-416 |Use After Free 16.71 44 +3
5 CWE-78 |Improper Neutralization of Special Elements used in an OS Command (OS5 Command Injection'® 15.65 23 +1
6 CWE-20 ||Improper Input Validation 15.50 35 -2
7 CWE-125 ||Out-of-bounds Read 14.60 2 -2
8 CWE-22 |Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 14.11 16 0
9 CWE-352 ||Cross-Site Request Forgery (CSRF) 11.73 0 0
10 CWE-434 ||Unrestricted Upload of File with Dangerous Type 10.41 5 0
11 CWE-862 |Missing Authorization 6.90 0 +5
12 CWE-476 |NULL Pointer Dereference 6.59 0 -1
13 CWE-287 |Improper Authentication 6.39 10 +1
14 CWE-190_|Integer Qverflow or Wragaround 5.89 4 -1
15 CWE-502 |Deserialization of Untrusted Data 5.56 14 -3

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

CWE-193 Off-by-One Error CWE-415 Double Free CWE-662 Improper Synchronization CWE-590 Free Memory Not on the
Heap
CWE-823 Use of Out-of-Range Pointer CWE-1102 Reliance on Machine- CWE-839 NLfmeric RaTn.ge Comparison CWE-562 Return of Stack Variable
Offset Dependent Data Without Minimum Check Address
Representation
CWE-786 Access of Memory Location CWE-195 Signed tp Unsigned CWE-131 Incorrec.t Calculation of CWE-587 Assignment ofa. Fixed
Conversion Error Buffer Size Address to a Pointer
Before Start of Buffer
CWE-680 Integer Overflow to Buffer CWE-129 Improper Validation of Array CWE-1223 Race Com.:lltlon for Write- CWE-588 Attempt to Acces§ Child of a
Index Once Attributes Non-Structure Pointer
Overflow
CWE-466 Return of Pointer Value CWE-366 Race Condition Within a CWE-368 Contgx.t Switching Race CWE-362 Signa.l Handler Race
: Thread Condition Condition
Outside of Expected Range
_ CWE-367 Time-of-Check Time-of-Use CWE-421 Race Condition During Access CWE-1105 Insufficient Encapsulation of
CWE-119 Improper Restriction of . .
R s (TOCTOU) Race Condition to Alternate Channel Machine-Dependent
Operations Within the Bounds Functionalit
of a Memory Buffer unctionality
CWE-758 Reliance on Undefined, CWE-843 Access of .Resource %leing CWE-1257 Impr.oper Acc.ess Control
Unspecified, or Incompatible Type (“Type Applied to Mirrored or
Implementation-Defined Confusion”) Aliased Memory Ranges
Behavior
06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Security

Don't worry about those 40 Linux USB
security holes. That's not a typo

Move along. Nothing to see here. By the way, try
this flash drive in your laptop, ta

By Thomas Claburn in San Francisco 7 Nov 2017 at 20:49 65 SHAREY

Bliro-Drucker mit [6cheriger Firmware -
Sicherheitsniveau wie vor Jahrzehnten

Forscher fanden rund 50 Schwachstellen in Druckern von Brother, HP, Lexmark,
Kyocera, Ricoh und Xerox. Einige sind weiterhin ungepatcht.

Lesezeit: 2 Min. In Pocket speichern

NEWS

Zscaler finds 117 Microsoft 365 bugs
via SketchUp 3D file type

Microsoft published patches to address all 117
Microsoft 365 Apps flaws disclosed Tuesday,
and the tech giant has disabled support for
SketchUp, or SKP, 3D model files.

Researchers find 36 new security flaws in

LTE protocol

South Korean researchers apply fuzzing techniques to LTE protocol and find 51 vulnerabilities, of which 36 were

new.

talin Cimpanu for Zero Day | March 2 800 GMT)| Topic: Security

Vulnerability in Volkswagen Discover
Media Infotainment System Addressed
by the Company

Cyber Security News Vulnerabilities

Hacker D|scovered “God Mode” Whilst Fuzzing

Some Old x86 CPU S

% Chips, god mode cpu ha

The medium severity vulnerability in Volkswagen Discover Media was found by a user who presented the details to the
company that confirmed the impact of the vulnerability.
d R

by thecyberexpress — June 27, 2023 Reading Time: 3 mins re

ck, god made x86, hacking cpu x86,

Eighteen of the 26 bugs impact Linux. Eleven have been patched already.

By Catalin Cimpanu for Zero Day | May 27, 2020 -- 11:23 GMT (12:23
BST) | Topic: Securtty

-inufy.v.ﬁ

New fuzzing tool finds 26 USB bugs in Linux,
Windows, macOS, and FreeBSD

BrokenType: Google-Tool spiirt Font-Exploits
in Windows auf

Google verdffentlicht sein Fuzzing-Werkzeug, mit dem man zwischen 2015 und

2017 fast 40 Schriftarten-Sicherheitsliicken in Windows aufgespiirt hatte.

06.11.2024

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://www.theregister.co.uk/2017/11/07/linux_usb_security_bugs/
https://www.heise.de/security/meldung/BrokenType-Google-Tool-spuert-Font-Exploits-in-Windows-auf-4155012.html
https://latesthackingnews.com/2018/08/12/a-hacker-found-god-mode-in-some-old-x86-cpus/
https://www.zdnet.com/article/researchers-find-36-new-security-flaws-in-lte-protocol/
https://www.heise.de/security/meldung/Buero-Drucker-mit-loecheriger-Firmware-Sicherheitsniveau-wie-vor-Jahrzehnten-4490944.html
https://www.techtarget.com/searchsecurity/news/366558079/Zscaler-finds-117-Microsoft-365-bugs-via-SketchUp-3D-file-type

Heartbleed

OpenSSL vulnerability (introduce 2012, disclosed 2014)

Heartbeat extension
= Heartbeat request: Payload + length
= Heartbeat answer: Payload
Improper input validation in the source code
= - buffer over-read
Memory after payload could store
= Session cookies, passwords
= Cryptographic keys, ...
Impact
= Worked in both directions!
= Compromised crypto keys, credentials
= Launch of Google Project Zero
= 500 million dollars

AFL + ASan could have detected Heartbleed (Hanno Boeck, 2015)

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STILL THERE?
IF 50, REPLY “POTATO" (6 LETTERS).

)

ser Meg wants these 6 letters: POTATO.

O

[

HMM...

ser Meg wants these 6 letters: POTATO.

j) o)
0

o

'

SERVER, ARE YOU STiLL. THERE?
IF S50, REPLY “HAT* (500 LETTERS),

/

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "BIRD" (Y LETTERS).

J

06.11.2024

er Meg wants these 500 letters: HAT.

ctions® page. Ewe (administrator) wen
t5 to set server’'s master key to 148
350385347, Isabel wants pages aboukt "
anakes ot not too long”. User Haren
WS vo_chra‘nqe account password to

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

OSS-Fuzz .

= Continuous fuzzing since 2016

= ldentify and fix over 10,000 vulnerabilities and 36,000 bugs across 1,000 as of
August 2023

* For open-source developers

“ Free of charge 0

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://bugs.chromium.org/p/oss-fuzz/issues/list?q=Type%3DBug-Security%20label%3Aclusterfuzz%20-status%3ADuplicate%2CWontFix&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=Type%3DBug%20label%3Aclusterfuzz%20-status%3ADuplicate%2CWontFix&can=1
https://github.com/google/oss-fuzz/tree/master/projects

YA
SO
A

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Positive
Functional testing
Testing for the functional correctness

Negative
Security testing
Testing the robustness of a system

NEGATIVE INPUT SPACE POSITIVE INPUT SPACE

D). unexpected
inputs, e.g.
SQL
injection

invalid inputs,

V%

SPECIFIED INPUT SPACE

VULNERABILITIES | |

Test with anomalous inputs to show absence of
undesired functionality that may lead to crashes,

exposure of protected information, etc.

06.11.2024

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

AND THATS NOT /B T Part of negative testing

WORST PRRT! TFE 4ORST Automated way of finding security vulnerabilities
| Ur20%e Provide invalid, unexpected, or random data as inputs
;'”E*’ET”D‘DHW‘ Monitor the device or program under test for exceptions such as
G0 B0 o crashes, memory corruptions, assertion failures, etc.
\

Fuzzer — tool that performs fuzz testing

/ Monitor ’ \

Inputs Crash
Creator [TOE] Oracle

Q¥

DB

\ < Feedback /

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

“On a dark and stormy night ...” — Miller et al. 1990
Spurious characters on the line
Interferences were not surprising, but that the
spurious characters caused programs to crash
Naive approach, but impressive:

= 90 programs tested, 24% crashed

Key message: “on receiving unusual input, they
might exit with minimal error messages, but they
should not crash.”

Triggered a significant area of research and
commercial tools

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

1950s A i \
= Random punch cards used to find bugs bkl

1980s
= Tests with random files and command-line parameters
= Reliability testing of Unix programs

1990s

= Barton Miller et al. coined the term “fuzz”: “... generates a stream of random characters to
be consumed by a target program”

2000s
= Various test suites have been developed (e.g., PROTOS, SPIKE)

2005

= MS includes fuzzing in the Security Development Lifecycle

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://www.microsoft.com/en-us/securityengineering/sdl/practices/security-testing

A
SO
A

CONCEPT OF FUZZING

I 06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Input Creation

Vemmmmmmssmmsmmasmmammaammssmmassmassmmsmsssmssmmsmmahaasamaaamaaamaan st

Feedback

= Categorization based on how input is created:
= Mutation-based

= Generation-based

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Random

Input
Creator

Simple, but most input data will fail

to penetrate the target code

Probability for generating a “mostly”

correct test case is very low

Basic input validation checks will

reject inputs
= \ersion numbers
= Checksums

06.11.2024

Monitor
Bug

Inputs Oracle

TOE

Feedback

& main.py

import random

1 usage
class RandomFuzzer:
def _init__(self, length=10):
self.length = length

1 usage
def fuzz(self):
for _ in range(3):
data = self.gen_data()
self.send(data)

1 usage
def gen_data(self):
data = ""
for _ in range(self.length):

data += chr(random.randrange(start: 32, stop: 127))

return data

1 usage
def send(self, data):
print(data)

> if _npame_ = "_main__":
fuzzer = RandomFuzzer(10)
fuzzer.fuzz()

Crash
DB

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Monitor B
Input ug
Creator Inputs Oracle Crash
TOE DB

Template or mutation-based Feedback
Modify valid inputs to create test cases
Corpus might be produced by human or automated
Problems
= Protocols with integrity validation (checksums)

= Stateful protocols (session IDs)
= Encrypted protocols

Example: Radamsa

kar o "1+(3-4)%5"

| radamsa --seed 268 -n 7 blackarch echo "1+(3-41«58" | radamsa --seed 268 -n 7 | bc

41 2311139 8291A
standard_ 4: syntax error

44

blackarch t [blackarch |

Input

Generation-based
Generate input from scratch

Require TOE data knowledge:
= Use specification, grammar, valid corpus

Understand protocol, file format, API, ...
Rules: structure and type of packet/message
Rules are known and can be broken

Protocol inference (proprietary protocols):
= NW traces and reverse engineering

06.11.2024

Monitor
Bug

Crash
TOE Oracle DB

Feedback

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Monitor

Input
Creator

Crash
TOE Oracle DB

Inputs

Feedback
Improved error-detection capabilities
= Crashes, hangs, data races, or non-termination

AddressSanitizers, DataFlowSanitizer,
ThreadSanitizer, LeakSanitizer, ...

= Drawbacks
* Performance and memory overhead
* Recompile code

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Monitor
Input
Creator

Crash
TOE Oracle DB

Inputs

Feedback

Categorization based on TOE knowledge/feedback:
= Blackbox

= Greybox

= Whitebox

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Monitor
Input
Creator

Crash
TOE Oracle DB

Inputs

Feedback

Blackbox
® No TOE knowledge
® No to minimal feedback

® Number of crashes/bugs found
® Time spent

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Input

Creator Inputs

Whitebox
Full TOE access

Monitor

TOE

Feedback

Bug
Oracle

Data created based on info analysing the internals of the TOE and the

information gathered when executing the TOE

Approaches:
~ Concolic execution (concrete + symbolic)
© Taint analysis

Crash
DB

Monitor

Bug
Inputs Crash
TOE Oracle DB

Input
Creator

Feedback

Greybox

© Grey-box fuzzing is a variant of white-box fuzzing that can only obtain some
partial information from each fuzz run

© Program instrumentation to get lightweight feedback
© Approaches:

© Lightweight static analysis and code coverage
@ Branch/Node Coverage

Monitor
Input
Creator

Crash
TOE Oracle DB

Inputs

Feedback

Crashes are (typically) analyzed manually

Triage
= Deduplication (pruning test cases triggering the
same bug)

= Test case minimization (reduce the size of the
input)

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Input creation: Information they have about the
= Mutational TOE/feedback:
= Generational = Blackbox

= Greybox

= Whitebox

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

A
SO
A

ADVANTAGES OF FUZZING

I 06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

06.11.2024

Automatic discovery

Fast

(Usually) Low effort

Proof of crash/unexpected behaviour
Covers edge cases

Interesting inputs due to randomness
Various bug types

Highly effective

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

A
SO
A

COMPLEXITY & CHALLENGES OF FUZZING

I 06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Challenges

“ Fuzzing Success?

= How can we assess residual security risk if the fuzzing
campaign was unsuccessful?

= What is the time budget?
= How to evaluate fuzzers?

= Various Targets:

= Different TOE Types (file, network, Ul, web, kernel 1/0O, or
multi-threaded)

= Stateful fuzzing
= Usability

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Input creation: balance between
= Exploring new paths (control flows), and
= Executing the same path with different input (data flow)

Efficient mutation operators
Kernel fuzzing
= Crashes bring the whole system

Protocol fuzzing
= Proprietary protocols
= Great deal of work to understand the specification

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

SW fuzzing relies on the detection of crashes,
but on loT devices memory corruptions are less visible

Bug oracles: Must be even more sophisticated
= Liveness checks

Complex protocols (USB) and various interfaces (wired, wireless)
Performance

Resetting a device after a crash
Instrumentation support for platform limited

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Protocol necessary for generation-based fuzzers
Challenge

= |oT, embedded, and industrial network devices with proprietary protocols

= Reading and analyzing specifications or
reverse engineering NW traces is time consuming

Machine learning approaches to infer protocol grammar (research topic)
= Corpus of real messages
= Learn protocol grammar
= Generate test cases

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

A
SO
A

FUZZING TOOLS/FRAMEWORKS

I 06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

dharma

java-afl
DOMFuzz MiniFuzz
BuzzFuzz antiparser GPF
boofuzz 4sfyzzer GLADE python-afl
CapFuzz KernelFuzzer WinAFL
FileFuzz
LTEfuzz cross fuzz FLAX AFLFast
LibFuzzer_ netzob
Skyfire .
BitFuzz zzuf
. Radamsa AFLGo
FairFuzz .
kelinci SPIKE jFuzz
Hawkeye honggfuzz
PeriScope
llifuzzer
Defensics SNOOZE
LangFuzz
Fuzzbox
SmartFuzz fzzowsk

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://fuzzing-survey.orq/

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

06.11.2024

https://fuzzing-survey.org/

Open Source

= 0SS-Fuzz = Sulley Fuzzing Framework
= american fuzzy lop = boofuzz

= Radamsa - a flock of fuzzers = Bfuzz

= APIFuzzer - fuzz test without coding = FuzzDB

= Jazzer - fuzzing for the JVM = Ffuf

= ForAllSecure Mayhem for API = go-fuzz

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://github.com/google/oss-fuzz
https://en.wikipedia.org/wiki/American_fuzzy_lop_%28fuzzer%29
https://gitlab.com/akihe/radamsa
https://pypi.org/project/APIFuzzer/
https://github.com/CodeIntelligenceTesting/jazzer
https://forallsecure.com/mayhem-for-api
https://github.com/OpenRCE/sulley
https://github.com/jtpereyda/boofuzz
https://github.com/RootUp/BFuzz
https://github.com/fuzzdb-project/fuzzdb
https://github.com/ffuf/ffuf
https://github.com/dvyukov/go-fuzz

A
SO
A

FUZZING IN STANDARDS

I 06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

UL2900-1 and UL2900-2-1: Healthcare and Wellness Systems - Software Cybersecurity
for Network-Connectable Products
Malformed input testing

= “The product shall continue to operate as intended when subject to invalid or unexpected inputs
on its external interfaces ...”

Consider

= File inputs

= Remote interfaces
= Supported protocols

Approach
= Generational malformed input tools for specific protocols
* >1 Mio unique / independent tests cases or 8 hours

= Template malformed input testing may be used (proprietary protocols)
* >5 Mio unique / independent test cases or 8 hours

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://www.shopulstandards.com/ProductDetail.aspx?productId=UL2900-1_1_S_20170705
https://www.shopulstandards.com/ProductDetail.aspx?UniqueKey=33295

Common Criteria

= Attacks based on forcing the TOE to cope with unusual or unexpected circumstances should
always be considered.

DIN SPEC 27027 (Mindestanforderungen an loT-fahige Gerate)

= |t is recommended that IT-security implementations of loT-devices are tested by means of
fuzzing.

IEC 62443: Security for Industrial Automation and Control Systems

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

MDCG 2019-16 Guidance on Cybersecurity for medical devices

Cybersecurity in Medical Devices: Quality System Considerations and
Content of Premarket Submissions by the U.S. Food and Drug
Administration (FDA)

IEC 81001-5-1 Health software and health IT systems safety, effectiveness
and security. Part 5-1: Security — Activities in the product life cycle.

AAMI TIR 57:2016 Principles For Medical Device Security - Risk
Management

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://ec.europa.eu/docsroom/documents/41863

UNECE WP.29 United Nations World Forum for Harmonization of Vehicle

SO 26262 Road vehicles — Functional Safety

Regulations
Automotive SPICE for Cybersecurity Guidelines
ISO/SAE 21434 Road Vehicles — Cybersecurity Engineering

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://www.iso.org/standard/43464.html
https://en.wikipedia.org/wiki/World_Forum_for_Harmonization_of_Vehicle_Regulations
https://webshop.vda.de/QMC/de/automotive-spice-for-cybersecurity_1st-edit-2021
https://www.iso.org/standard/70918.html

ISO/IEC/IEEE 29119 Software and Systems Engineering - Software Testing

ISO/IEC 12207 Systems and Software Engineering — Software Life Cycle
Processes

ISO 27001 Information Technology — Security Technigues — Information Security
Management Systems

IT-Grundschutz (Germany) Based on ISO 27001

ISO 22301 Security and Resilience — Business Continuity Management Systems
NIST Guidelines on Minimum Standards for Developer Verification of Software
NIST SP 800-95 Web Services — standard for software testing (USA) and others
SA-11: Developer Security Testing And Evaluation

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://www.iso.org/standard/45142.html
https://www.iso.org/standard/63712.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Kompendium/IT_Grundschutz_Kompendium_Edition2019.pdf;jsessionid=5528868285D64D77B3F1896EBBEB65B7.1_cid369?__blob=publicationFile&v=5
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Grundschutz/International/bsi_it_gs_comp_2021.html
https://www.iso.org/standard/75106.html
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-95.pdf
https://csf.tools/reference/nist-sp-800-53/r4/sa/sa-11/sa-11-8/

YA
SO
A

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Fuzzing verifies code that processes input at trust boundaries
Naive approach (large input space), but effective

Open challenges

= Monitoring and bug oracle (fault or error detection)
= HW fuzzing

= Protocol inference

Standards require “fuzz testing”, and “reliability testing”
Should also be done during development

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Hanno Boeck: “How Heartbleed could've been found”. https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html,
April 2015.

Xiaogang Zhu et al., ‘Fuzzing: A Survey for Roadmap’, ACM Computing Surveys 54, https://doi.org/10.1145/3512345.

Manes et al.: ,The Art, Science, and Engineering of Fuzzing: A Survey”, arXiv 1812.00140, 2019.

Miller et al.: “An Empirical Study of the Reliability of UNIX Utilities”, Commun. ACM 33(12), 1990.

Andreas Zeller, Rahul Gopinath, Marcel Bohme, Gordon Fraser, and Christian Holler: , The Fuzzing Book”. https://www.fuzzingbook.org/
Jun Li, Bodong Zhao, and Chao Zhang, ‘Fuzzing: A Survey’, Cybersecurity 1, no. 1: 1-13, https://doi.org/10.1186/s42400-018-0002-y.

Marcel Bohme, Cristian Cadar, and Abhik Roychoudhury, ‘Fuzzing: Challenges and Reflections’, IEEE Software 38, no. 3: 79-86,
https://doi.org/10.1109/MS.2020.3016773.

Patrice Godefroid, ‘Fuzzing: Hack, Art, and Science’, Communications of the ACM 63, no. 2: 7076, https://doi.org/10.1145/3363824.
Valentin J. M. Manes et al., ‘The Art, Science, and Engineering of Fuzzing: A Survey’, https://doi.org/10.48550/arXiv.1812.00140.

Hongliang Liang et al., ‘Fuzzing: State of the Art’, IEEE Transactions on Reliability 67, no. 3: 1199-1218,
https://doi.org/10.1109/TR.2018.2834476.

Recent Papers Related to Fuzzing - https://github.com/wcventure/FuzzingPaper

06.11.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
https://doi.org/10.1145/3512345
https://dblp.org/db/journals/cacm/cacm33.html#MillerFS90
https://www.fuzzingbook.org/
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1145/3363824
https://doi.org/10.48550/arXiv.1812.00140
https://doi.org/10.1109/TR.2018.2834476
https://github.com/wcventure/FuzzingPaper

	Slide 1: Secure Product Lifecycle
	Slide 2: Agenda
	Slide 3: Secure Product Lifecycle
	Slide 4: Secure Development Lifecycle
	Slide 5: Motivation
	Slide 6: What bugs can you find with fuzzing?
	Slide 7: What bugs can you find with fuzzing?
	Slide 8: In news
	Slide 11: Heartbleed
	Slide 12
	Slide 13: OSS-Fuzz
	Slide 14: fuzzing
	Slide 16: Software Testing
	Slide 17: Fuzzing in a nutshell
	Slide 18: How it all began?
	Slide 19: History
	Slide 20: Concept of fuzzing
	Slide 21: Input Creation
	Slide 22: Input Creation
	Slide 23: Input Creation
	Slide 24: Input Creation
	Slide 25: Monitoring
	Slide 26: Feedback
	Slide 27: Feedback
	Slide 28: Feedback
	Slide 29: Feedback
	Slide 30: Triage
	Slide 31: Categorization
	Slide 32: Advantages of fuzzing
	Slide 33: Advantages
	Slide 34: Complexity & challenges of fuzzing
	Slide 35: Challenges
	Slide 36: Challenges: Software Fuzzing
	Slide 37: Challenges: Hardware Fuzzing
	Slide 38: Protocol Inference
	Slide 39: Fuzzing Tools/Frameworks
	Slide 40
	Slide 41
	Slide 42: Open Source
	Slide 43: Fuzzing in Standards
	Slide 44: Fuzzing in Standards
	Slide 45: Fuzzing in Standards
	Slide 46: Medical Standards
	Slide 47: Road Vehicle Standards
	Slide 48: Even more standards
	Slide 49: Conclusions
	Slide 50: Conclusions
	Slide 51: Resources

