
Secure Product Lifecycle

Requirements Management & Secure Design

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Today‘s Agenda

▪ Context within SPLC – Recap

▪ Planning

▪ Requirements Management

▪ Security by Design

▪ Security Mechanisms

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Communication

▪ Karin Maier k.maier@yagoba.com

▪ Christoph Herbst christoph@yagoba.com

▪ Discord: #spl

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

mailto:k.maier@yagoba.com
mailto:christoph@yagoba.com

Secure Product Lifecycle

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Planning

Analysis

Design

ImplementationTesting

Maintenance

Release

Conformity
assessment

Decomissioning

Problem

PLANNING

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Planning: Best Practices

▪ Misconceptions:
▪ Doing the work is more important than planning

▪ Plans are for managers

▪ Plans are hypothetical, it gets changed anyway, save the effort…

▪ Least questions you should be asking:
▪ Who is doing what and by when?

▪ How do we handle change?

▪ Planning is about being “less” wrong and having a map how to
navigate all the iterations of the secure product lifecycle

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Recap

▪ Security should be considered from the ground up

▪ Include security in the software requirements
▪ When defining what a system must do, also consider what a system

must not do

▪ Include regulatory requirements

▪ Risk and threat analysis to understand
▪ Business risks of successful exploits

▪ Costs of liability, redevelopment, and damage to brand image and
market share

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Recap

▪ Document key security objectives

▪ Separate security requirements from functional requirements
so explicit review and testing is possible

▪ For every use case, write misuse case (intentional misuse)

▪ Write requirements for industry standards & regulatory rule

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Secure Development Lifecycle

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

• Document
security objectives

• Secure
requirements
review

Requirements

• Threat modeling

• Secure design
review

Design

• Developer training

• Coding standards

• Secure code
review

• Static code
analysis

Implementation

• Negative testing

• Known
vulnerabilities

• Penetration testing

Testing

• Secure update
process

• Vulnerability
management

• Security incident
response process

Deployment

Glossary

▪ Use cases
▪ The use case has been an effective form of representing user requirements

visually

▪ use case = scenario (user story) + actors (who interacts with the system)

▪ Misuse cases
▪ can help to represent security requirements visually from attackers' point of

view

▪ Abuse cases
▪ represent security requirements from a much stronger destruction aspect of

the system

REQUIREMENT MANAGEMENT

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

It’s not a bug, it’s feature…no wait, it’s a
bug

▪ The hardest part of building
software is not coding …

… it's requirements

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Types of software requirements

▪ Functional requirements (FR)

▪ Describe specific system functions

▪ Non-Functional Requirements (NFR)

▪ Define aspects like performance, security, usability, reliability, and
scalability

▪ Further groupings/subtypes include e.g. domain specific
requirements (e.g. given by governments, laws)

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Examples

▪ … Should calculate the sum.

▪ For every .. a valid keypair has to be derived.

▪ … at most 10 ms to authenticate…

▪ … for any given input return all available from the database.

▪ Only verified user is allowed to do …

▪ ... should not exceed more than … kB on the secure element. NFR

▪ … It should be easy to retrieve ..

▪ 10.000 consecutive operations without error

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Examples

▪ … Should calculate the sum. FR

▪ For every .. a valid keypair has to be derived. FR

▪ … at most 10 ms to authenticate… NFR

▪ … for any given input return all available from the database. FR

▪ Only verified user is allowed to do … FR

▪ ... should not exceed more than … kB on the secure element. NFR

▪ … It should be easy to retrieve .. NFR

▪ 10.000 consecutive operations without error NFR

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Requirements matter

▪ Requirement problems are the primary reason that projects

▪ are significantly over budget and past schedule

▪ have significantly reduced scope

▪ deliver poor-quality applications that are little used once delivered

▪ One source of these problems is poorly expressed or analyzed
quality requirements, such as security and privacy

▪ Difficult and expensive to significantly improve an application
after it is in its operational environment

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Security requirements

▪ Requirements are the starting point, responsible for any
system, legal and contractual issues, governance, and provide
full functional perspective of the system being developed

▪ Among all non-functional requirements security requirements
are the most important ones

▪ Process for analyzing security requirements and then applying
security techniques should be a systematic and an intuitive
way

Security Quality Requirements Engineering
(SQUARE)

▪ SQUARE is a nine-step process that helps build security,
including privacy, into the early stages of the production
lifecycle.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=484579

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=484579

SQUARE –
Elicitation and Analysis Process

Requirement Engineering Tasks

▪ Requirements Engineering is a discipline on its own, which
provides process, tools, techniques, modelling, cost
estimation, project planning, and contractual agreements
Extracting and defining requirements

▪ Eliciting and extracting requirements

▪ Prioritizing security requirements

▪ Risk assessment for security requirements

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Requirement Management Tasks

▪ Managing security requirements throughout the life cycle

▪ Risk assessment for security requirements

Followed by

▪ Design and implement security requirements

▪ Trace security requirements

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Requirements Traceability Management

▪ We need to identify, analyze, and incorporate security
requirements as part of the functional requirements process

▪ Requirements traceability can be defined as the ability to
describe and follow the lifespan of a requirement in both a
forwards and backwards direction

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Security Requirements Traceability Matrix
(SRTM)

▪ SRTM is a grid that supplies documentation and a
straightforward presentation of the required elements for
security of a system

▪ SRTM assures accountability for all processes and completion
of all work

▪ SRTM not only for technological but also for conformity
assessment reasons

▪ You get more than one use out of it (e.g. defect analysis)

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

SRTM Example

Req
ID

Req Desc Type/Stakeholder Prio (1 High – 5
Low)

… TestCase
ID/Name

R1 The calculation must
be faster than 5 ms.

NFR (Quality
Department)

3 T203; T204;

R2 The sum of is
caluclated correctly

FR 1 T40

R3 … … … … …

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

SECURE DESIGN

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Glossary

▪ Software Design aims to help transform requirements into implementation

▪ Difference between Software Design and Software Architecture
▪ Software Design focus is more on a module/component/class level

▪ Software Architecture focus is more on the design of the entire system

▪ Architecture is "what" we're building; design is "how" we're building

▪ Architecture is strategic, while design is tactical

▪ Therefore for the SDLC leads us to Secure Design and Security Architecture

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Secure Development Lifecycle

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

• Document security
objectives

• Secure
requirements
review

Requirements

• Threat modeling

• Secure design
review

Design

• Developer training

• Coding standards

• Secure code
review

• Static code
analysis

Implementation

• Negative testing

• Known
vulnerabilities

• Penetration testing

Testing

• Secure update
process

• Vulnerability
management

• Security incident
response process

Deployment

Meaning of Security by Design

▪ In a broad sense it is a systematically organized framework for
whole product life cycle

▪ Make security an integral part of design phase of product
development

▪ Design your product with the fact in mind that it will be
attacked

▪ Integrate security controls from the beginning

▪ Make security tests a critical part of development process

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Goals

▪ Define threats to a system in a detail that allows developers to understand
and code against

▪ Provide system architecture mitigating as many threats as possible
▪ Design techniques that force developers to consider security with every

line of code
▪ Enforce necessary authentication, authorization, confidentiality, data

integrity, privacy, accountability, availability, safety & non-repudiation
requirements

▪ Design a robust security architecture
▪ Preserve (implemented) architecture during software evolution
▪ Take malicious practices for granted

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Steps

▪ Perform threat analysis

▪ Identify design techniques that mitigate risks

▪ Identify components essential to security

▪ Build security test plan

▪ Plan for incident response

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Minimize Attack Surface

▪ SW attack surfaces: weaknesses associated with code
▪ Missing coding guidelines

▪ Unnecessary code, untested code

▪ 3rd party SW

▪ Network attack surfaces: weaknesses associated w/
networking components
▪ Ports, protocols, channels, devices & their interfaces

▪ Cloud servers, data, systems, and processes

▪ Human attack surfaces: exploit directed at humans
22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Attack Surfaces

Examples

▪ Open ports on outward-facing web servers

▪ Services available inside firewall perimeter

▪ Code that processes incoming data, email, XML & office
documents

▪ An employee with access to sensitive information is socially
engineered

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Minimize Attack Surface

▪ Reduce area & exposure of attack surface
▪ Apply principles of least privilege & least functionality

▪ Deprecate unsafe functions

▪ Eliminate Application Programming Interfaces (APIs) vulnerable to
cyberattacks

▪ Reduce accessibility of attack surface
▪ Limit amount of time adversaries have (i.e., the window of opportunity)

to initiate & complete cyberattacks

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Attack Surfaces

Principle of least privilege

▪ SW processes & their authorized users shall be granted only
those privileges required for them to carry out their specified
function(s)

Principle of least functionality

▪ Disabling/uninstalling unused/unnecessary functionality,
protocols, ports & services

▪ Limiting installable SW & functionality of that SW

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Defense in Depth

▪ Multiple layers of security
controls in place

▪ If one mechanism fails,
another will already be in
place

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Ensure Confidentiality

▪ Encrypt sensitive data

▪ Use standardized algorithms

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Ensure Integrity

▪ Use secure boot

▪ Design secure update process

▪ Verify integrity

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Ensure authenticity & non-repudiation

▪ Use standardized protocols & algorithms

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Secure Communication

▪ Never communicate over insecure channels

▪ Verify authenticity of data

▪ Use standardized protocols

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Programming Language

▪ Languages running inside VMs
(e.g. Java, C#) reduce risk of buffer
overflow vulnerabilities

▪ Modern languages with security in
mind

▪ Go

▪ Rust

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://www.whitesourcesoftware.com/most-secure-
programming-languages/

https://www.whitesourcesoftware.com/most-secure-programming-languages/
https://www.whitesourcesoftware.com/most-secure-programming-languages/

Input Validation

▪ Still one of the most common issues

▪ Proper testing of any input supplied by a user/application

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://xkcd.com/327/

Secure error handling

▪ Detect errors & handle them appropriately

▪ Log errors

▪ Investigate errors

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Don‘t invent your own…

▪ … crypto

▪ … protocol

Instead, use

▪ standardized algorithms & protocols

▪ existing & proven implementations/libraries

▪ existing (security) frameworks

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Further considerations

▪ Design considerations include both architectural issues at system level & at
individual component level

▪ System level: techniques to reduce attack surface

▪ Component level: how best to implement each module

▪ Define roles & authorization concept

▪ Which roles are required, e.g. admin, user, other devices, etc.

▪ What assets should each role have access to?

▪ Define audit concept

▪ Define secure update concept (signature) & roll-back option

▪ Define secure storage

▪ Design deletion concept for decommission phase

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Defensive Programming

Defend against the impossible, because the impossible will
happen!

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Defensive Programming

Defensive programming is a form of defensive design intended
to ensure the continuing function of a piece of software under
unforeseen circumstances. Defensive programming practices are
often used where high availability, safety or security is needed.

From: https://en.wikipedia.org/wiki/Defensive_programming

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://en.wikipedia.org/wiki/Defensive_design
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Defensive_programming

Defensive Programming

▪ Source code should be readable & understandable

▪ Make software behave predictable even in case of unexpected
inputs / actions

▪ Assume that software will be attacked

▪ Use safe functions

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Key Principles

▪ DRY (don’t repeat yourself)
▪ Duplication in logic should be eliminated via abstraction
▪ Duplication in process should be eliminated via automation

▪ SOLID (object oriented)
▪ S – [each class has a] Single-responsiblity principle
▪ O – Open [for extension] – closed [for modification] principle
▪ L - Liskov [sub-type] substitution principle (child class should be usable in place of parent class)
▪ I - Interface segregation principle [no extraneous methods] (specific interfaces instead of general

purpose interfaces)
▪ D - Dependency Inversion Principle [i.e. repository pattern] (high level modules should not

depend on low-level modules)

▪ CQRS (Command Query Responsibility Segregation)
▪ Segregate operations reading data from operations updating data (managing security

permissions can be easier)

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Defensive Programming

Never trust user input

▪ Always assume you’re going to receive something you don’t
expect

▪ Do whitelists not blacklists, e.g. when validating input

▪ Don’t check for invalid types but check for valid types

▪ Be strict

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Defensive Programming

▪ Use Database abstraction
▪ Use existing abstraction tools & libraries

▪ Don’t reinvent the wheel
▪ Only reason why you should build it on your own is that you need

something that doesn’t exist/exists but doesn’t fit within your needs

▪ Don’t trust developers
▪ Developers shouldn’t trust others developers’ code

▪ We should neither trust our own code

▪ Write tests
22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

SECURITY MECHANISMS

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Overview

▪ Cryptography

▪ Protocols

▪ Privacy techniques

▪ Hardware security

▪ Authentication and authorization

▪ Key Management

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Cryptography

▪ Confidentiality

▪ Integrity

▪ Authentication

▪ Anonymity

▪ Non-repudiation

▪ Time stamping

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Cryptography

▪ Symmetric cryptography

▪ Asymmetric cryptography

▪ Cryptographic hash functions

▪ Random Number Generators

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Cryptographic Standards

▪ National Institute of Technology (NIST)
▪ U.S. Government Federal Information Processing Standards (FIPS)

▪ Internet Engineering Task Force (IETF)

▪ International Organization for Standardization (ISO)
▪ https://webstore.ansi.org/industry/software/encryption-cryptography

▪ National Standards

▪ European Union Agency for Network and Information Security
(ENISA)
▪ https://www.enisa.europa.eu/topics/data-protection/security-of-personal-

data/cryptographic-protocols-and-tools

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://webstore.ansi.org/industry/software/encryption-cryptography
https://www.enisa.europa.eu/topics/data-protection/security-of-personal-data/cryptographic-protocols-and-tools
https://www.enisa.europa.eu/topics/data-protection/security-of-personal-data/cryptographic-protocols-and-tools

Guidelines

Examples

▪ https://csrc.nist.gov/Projects/Cryptographic-Standards-and-
Guidelines

▪ https://www.owasp.org/index.php/Guide_to_Cryptography

▪ https://www.enisa.europa.eu/publications/algorithms-key-
sizes-and-parameters-report/at_download/fullReport

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://csrc.nist.gov/Projects/Cryptographic-Standards-and-Guidelines
https://csrc.nist.gov/Projects/Cryptographic-Standards-and-Guidelines
https://www.owasp.org/index.php/Guide_to_Cryptography
https://www.enisa.europa.eu/publications/algorithms-key-sizes-and-parameters-report/at_download/fullReport
https://www.enisa.europa.eu/publications/algorithms-key-sizes-and-parameters-report/at_download/fullReport

Communication Protocols

▪ Transport Layer Security (TLS)

▪ IPsec

▪ Wireguard

▪ …

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Hardware Security

▪ Trusted Platform Module (TPM)

▪ Hardware Security Modules (HSM)

▪ Secure Elements

▪ Trusted Execution Environment (TEE)

▪ Root of Trust

▪ …

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Authentication

▪ Password-based authentication

▪ Multi-factor authentication

▪ Certificate-based authentication

▪ Biometric authentication

▪ Token-based authentication

▪ …

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Authorization

▪ Attribute based

▪ Claims based Approach

▪ Group/Role based Approach

▪ Rule based Approach

▪ …

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Key Management

▪ Asymmetric vs symmetric

▪ Key generation

▪ Key distribution

▪ Key storage

▪ Key destruction

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

SUMMARY

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

First Stages of a SPLC

▪ Plan and plan for change

▪ Utilize your threat model and risk assessment in the later
phases

▪ Know your types of requirements

▪ Security requirements need to be traceable and testable

▪ Apply design principles to achieve Security by Design

▪ Do not reinvent the wheel and use well established security
mechanisms

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

	Slide 1: Secure Product Lifecycle
	Slide 2: Today‘s Agenda
	Slide 3: Communication
	Slide 4: Secure Product Lifecycle
	Slide 5: Planning
	Slide 6: Planning: Best Practices
	Slide 7: Recap
	Slide 8: Recap
	Slide 9: Secure Development Lifecycle
	Slide 10: Glossary
	Slide 11: Requirement Management
	Slide 12: It’s not a bug, it’s feature…no wait, it’s a bug
	Slide 13: Types of software requirements
	Slide 14: Examples
	Slide 15: Examples
	Slide 16: Requirements matter
	Slide 17: Security requirements
	Slide 18: Security Quality Requirements Engineering (SQUARE)
	Slide 19: SQUARE – Elicitation and Analysis Process
	Slide 20: Requirement Engineering Tasks
	Slide 21: Requirement Management Tasks
	Slide 22: Requirements Traceability Management
	Slide 23: Security Requirements Traceability Matrix (SRTM)
	Slide 24: SRTM Example
	Slide 25: SECURE DESIgn
	Slide 26: Glossary
	Slide 27: Secure Development Lifecycle
	Slide 28: Meaning of Security by Design
	Slide 29: Goals
	Slide 30: Steps
	Slide 31: Minimize Attack Surface
	Slide 32: Attack Surfaces
	Slide 33: Minimize Attack Surface
	Slide 34: Attack Surfaces
	Slide 35: Defense in Depth
	Slide 36: Ensure Confidentiality
	Slide 37: Ensure Integrity
	Slide 38: Ensure authenticity & non-repudiation
	Slide 39: Secure Communication
	Slide 40: Programming Language
	Slide 41: Input Validation
	Slide 42: Secure error handling
	Slide 43: Don‘t invent your own…
	Slide 44: Further considerations
	Slide 45: Defensive Programming
	Slide 46: Defensive Programming
	Slide 47: Defensive Programming
	Slide 48: Key Principles
	Slide 49: Defensive Programming
	Slide 50: Defensive Programming
	Slide 51: Security MECHANISMs
	Slide 52: Overview
	Slide 53: Cryptography
	Slide 54: Cryptography
	Slide 55: Cryptographic Standards
	Slide 56: Guidelines
	Slide 57: Communication Protocols
	Slide 58: Hardware Security
	Slide 59: Authentication
	Slide 60: Authorization
	Slide 61: Key Management
	Slide 62: Summary
	Slide 63: First Stages of a SPLC

