Secure Product Lifecycle

Requirements Management & Secure Design

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Context within SPLC — Recap
Planning

Requirements Management
Security by Design

Security Mechanisms

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Communication

= Karin Maier k.maier@yagoba.com

= Christoph Herbst christoph@yagoba.com

= Discord: #spl

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

mailto:k.maier@yagoba.com
mailto:christoph@yagoba.com

Planning

Maintenance Analysis

Implementation

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Decomissioning

LonNTto Y

YA
SO
A

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Misconceptions:

= Doing the work is more important than planning

= Plans are for managers

= Plans are hypothetical, it gets changed anyway, save the effort...
Least questions you should be asking:

= Who is doing what and by when?

= How do we handle change?

Planning is about being “less” wrong and having a map how to
navigate all the iterations of the secure product lifecycle

Security should be considered from the ground up

Include security in the software requirements

= When defining what a system must do, also consider what a system
must not do

Include regulatory requirements

Risk and threat analysis to understand
= Business risks of successful exploits

= Costs of liability, redevelopment, and damage to brand image and
market share

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Document key security objectives

Separate security requirements from functional requirements
so explicit review and testing is possible

For every use case, write misuse case (intentional misuse)
Write requirements for industry standards & regulatory rule

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Secure Development Lifecycle

é)

* Document
security objectives

* Secure
requirements
review

22.10.2024

- [Design }\

* Threat modeling

* Secure design
review

4 N

* Developer training

* Coding standards

* Secure code
review

* Static code
analysis

\—[Implementation

/_[Testing]\

* Negative testing

* Known
vulnerabilities

* Penetration testing

- J

4 N

* Secure update
process

* Vulnerability
management

* Security incident
response process

\—[Deployment

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Use cases

= The use case has been an effective form of representing user requirements
visually

= use case = scenario (user story) + actors (who interacts with the system)
Misuse cases
= can help to represent security requirements visually from attackers' point of
view
Abuse cases

= represent security requirements from a much stronger destruction aspect of
the system

A
SO
A

REQUIREMENT MANAGEMENT

I 22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

It’s not a bug, it’s feature...no wait, it’s a
bug

“ The hardest part of building
software is not coding ...

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Functional requirements (FR)
= Describe specific system functions

Non-Functional Requirements (NFR)

= Define aspects like performance, security, usability, reliability, and
scalability

Further groupings/subtypes include e.g. domain specific
requirements (e.g. given by governments, laws)

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

... Should calculate the sum.

For every .. a valid keypair has to be derived.

... at most 10 ms to authenticate...

... for any given input return all available from the database.
Only verified user is allowed to do ...

... Should not exceed more than ... kB on the secure element,
... It should be easy to retrieve ..

10.000 consecutive operations without error

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

... Should calculate the sum. FR

For every .. a valid keypair has to be derived. FR

... at most 10 ms to authenticate... NFR

... for any given input return all available from the database. FR
Only verified user is allowed to do ... FR

... Should not exceed more than ... kB on the secure element. NFR
... It should be easy to retrieve .. NFR

10.000 consecutive operations without error NFR

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Requirement problems are the primary reason that projects
= are significantly over budget and past schedule

= have significantly reduced scope

= deliver poor-quality applications that are little used once delivered

One source of these problems is poorly expressed or analyzed
quality requirements, such as security and privacy

Difficult and expensive to significantly improve an application
after it is in its operational environment

Requirements are the starting point, responsible for any
system, legal and contractual issues, governance, and provide
full functional perspective of the system being developed

Among all non-functional requirements security requirements
are the most important ones

Process for analyzing security requirements and then applying
security techniques should be a systematic and an intuitive
way

SQUARE is a nine-step process that helps build security,
including privacy, into the early stages of the production
lifecycle.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=484579

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=484579

SQUARE -

Elicitation and Analysis Process

Elicit security
: requirements

Artifacts, risk assessment Joint Application
| results, selected '
: techniques

: Development (JAD),

| interviews, surveys,

. model-based analysis,

| checklists, lists of
reusable requirements
types, document reviews

. Stakeholders facilitated by
: requirements engineer :

Initial cut at security

: requirements

! Categorize requirements
as to level (system,

i software, etc.) and

{ whether they are
requirements or other

. kinds of constraints

 Initial requirements,
i architecture

- Work session using a
standard set of categories

: Requirements engineer,
. other specialists as
: needed

Categorized requirements

¢ Prioritize requirements

| Categorized requirements
¢ and risk assessment
i results

Prioritization methods
such as Triage, Win-Win

| Stakeholders facilitated by
- requirements engineer :

Prioritized requirements

Requirements inspection

Prioritized requirements,
i candidate formal
inspection technique

! Inspection methods such
. as Fagan, peer reviews

- Inspection team

Initial selected

. requirements,

: documentation of
decision-making process
: and rationale

Requirements Engineering is a discipline on its own, which
provides process, tools, techniques, modelling, cost
estimation, project planning, and contractual agreements
Extracting and defining requirements

Eliciting and extracting requirements
Prioritizing security requirements
Risk assessment for security requirements

Managing security requirements throughout the life cycle

Risk assessment for security requirements
Followed by

Design and implement security requirements
Trace security requirements

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

We need to identify, analyze, and incorporate security
requirements as part of the functional requirements process

Requirements traceability can be defined as the ability to
describe and follow the lifespan of a requirement in both a
forwards and backwards direction

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

SRTM is a grid that supplies documentation and a
straightforward presentation of the required elements for
security of a system

SRTM assures accountability for all processes and completion
of all work

SRTM not only for technological but also for conformity
assessment reasons

You get more than one use out of it (e.g. defect analysis)

Req Desc Type/Stakeholder Prio (1 High-5 TestCase
Low) ID/Name

R2

R3

22.10.2024

The calculation must
be faster than 5 ms.

The sum of is
caluclated correctly

NFR (Quality
Department)

FR

T203; T204;

T40

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

YA
SO
A

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Software Design aims to help transform requirements into implementation

Difference between Software Design and Software Architecture
= Software Design focus is more on a module/component/class level
= Software Architecture focus is more on the design of the entire system

Architecture is "what" we're building; design is "how" we're building
Architecture is strategic, while design is tactical

Therefore for the SDLC leads us to Secure Design and Security Architecture

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Secure Development Lifecycle

4)
* Document security
objectives
* Secure
requirements
review

\—[Requirements]/

22.10.2024

* Threat modeling

* Secure design
review

4 N

* Developer training

* Coding standards

* Secure code
review

* Static code
analysis

\—[Implementation

/_[Testing]\

* Negative testing

* Known
vulnerabilities

* Penetration testing

- J

4 N

* Secure update
process

* Vulnerability
management

* Security incident
response process

\—[Deployment

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

In a broad sense it is a systematically organized framework for
whole product life cycle

Make security an integral part of design phase of product
development

Design your product with the fact in mind that it will be
attacked

Integrate security controls from the beginning
Make security tests a critical part of development process

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Define threats to a system in a detail that allows developers to understand
and code against

Provide system architecture mitigating as many threats as possible

Design technigues that force developers to consider security with every
line of code

Enforce necessary authentication, authorization, confidentiality, data
integrity, privacy, accountability, availability, safety & non-repudiation
requirements

Design a robust security architecture
Preserve (implemented) architecture during software evolution
Take malicious practices for granted

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Perform threat analysis

|dentify design techniques that mitigate risks
ldentify components essential to security
Build security test plan

Plan for incident response

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

SW attack surfaces: weaknesses associated with code
= Missing coding guidelines

= Unnecessary code, untested code

= 31 party SW

Network attack surfaces: weaknesses associated w/
networking components

= Ports, protocols, channels, devices & their interfaces

= Cloud servers, data, systems, and processes

Human attack surfaces: exploit directed at humans

Examples
Open ports on outward-facing web servers
Services available inside firewall perimeter

Code that processes incoming data, email, XML & office
documents

An employee with access to sensitive information is socially
engineered

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Reduce area & exposure of attack surface

= Apply principles of least privilege & least functionality
= Deprecate unsafe functions

= Eliminate Application Programming Interfaces (APIs) vulnerable to
cyberattacks

Reduce accessibility of attack surface

= Limit amount of time adversaries have (i.e., the window of opportunity)
to initiate & complete cyberattacks

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Principle of least privilege

SW processes & their authorized users shall be granted only
those privileges required for them to carry out their specified
function(s)

Principle of least functionality

Disabling/uninstalling unused/unnecessary functionality,
protocols, ports & services

Limiting installable SW & functionality of that SW

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Defense in Depth

= Multiple layers of security
controls in place

“ |f one mechanism fails,
another will already be in
place

22.10.2024

POLICIES,
PROCEDURES
& AWARENESS

PHYSICAL

PERIMETER

NETWORK

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Ensure Confidentiality

“ Encrypt sensitive data
= Use standardized algorithms

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Use secure boot
Design secure update process
Verify integrity

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Ensure authenticity & non-repudiation .

= Use standardized protocols & algorithms

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Never communicate over insecure channels
Verify authenticity of data
Use standardized protocols

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Languages running inside VMs
(e.g. Java, C#) reduce risk of buffer
overflow vulnerabilities

Modern languages with security in
mind

= Go

= Rust

22.10.2024

Total reported open source vulnerabilities per language:

1. C (46.9%)

2. PHP (16.7%)

3. Java (11.4%)

4. JavaScript (10.2%)
5. Python (5.45%)

6. C++ (5.23%)

7. Ruby (4.25%)

https://www.whitesourcesoftware.com/most-secure-
programming-languages/

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://www.whitesourcesoftware.com/most-secure-programming-languages/
https://www.whitesourcesoftware.com/most-secure-programming-languages/

Still one of the most common issues

Proper testing of any input supplied by a user/application

22.10.2024

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
(OMPUTER TROUBLE.

\%ﬂm

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY

i

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Stwderts;-~ 7

~OH.YES. LITTE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND T HOPE
~~ YOUVE LEARNED
L TOSANIMIZE YOUR
DATARASE INP(T,

https://xkcd.com/327/

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Detect errors & handle them appropriately
Log errors
Investigate errors

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

... Crypto
... protocol

Instead, use
standardized algorithms & protocols
existing & proven implementations/libraries
existing (security) frameworks

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Design considerations include both architectural issues at system level & at
individual component level

= System level: techniques to reduce attack surface
= Component level: how best to implement each module
Define roles & authorization concept
= Which roles are required, e.g. admin, user, other devices, etc.
= What assets should each role have access to?
Define audit concept
Define secure update concept (signature) & roll-back option
Define secure storage
Design deletion concept for decommission phase

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Defensive Programming .

Defend against the impossible, because the impossible will
happen!

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Defensive programming is a form of defensive design intended
to ensure the continuing function of a piece of software under
unforeseen circumstances. Defensive programming practices are
often used where high availability, safety or security is needed.

From: https://en.wikipedia.org/wiki/Defensive programming

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://en.wikipedia.org/wiki/Defensive_design
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Defensive_programming

Source code should be readable & understandable

Make software behave predictable even in case of unexpected
inputs / actions

Assume that software will be attacked
= Use safe functions

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

DRY (don’t repeat yourself)
= Duplication in logic should be eliminated via abstraction
= Duplication in process should be eliminated via automation
SOLID (object oriented)
= S —[each class has a] Single-responsiblity principle
= O - Open [for extension] — closed [for modification] principle
= |- Liskov [sub-type] substitution principle (child class should be usable in place of parent class)

= |- Interface segregation principle [no extraneous methods] (specific interfaces instead of general
purpose interfaces)

= D - Dependency Inversion Principle [i.e. repository pattern] (high level modules should not
depend on low-level modules)

CQRS (Command Query Responsibility Segregation)

= Segregate operations reading data from operations updating data (managing security
permissions can be easier)

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Never trust user input

Always assume you’re going to receive something you don’t
expect

Do whitelists not blacklists, e.g. when validating input

Don’t check for invalid types but check for valid types
Be strict

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Use Database abstraction
= Use existing abstraction tools & libraries

Don’t reinvent the wheel

= Only reason why you should build it on your own is that you need
something that doesn’t exist/exists but doesn’t fit within your needs

Don’t trust developers
= Developers shouldn’t trust others developers’ code

= \WWe should neither trust our own code
Write tests

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

A
SO
A

SECURITY MECHANISMS

I 22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Cryptography

Protocols

Privacy techniques

Hardware security
Authentication and authorization
Key Management

22.10.2024

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Confidentiality
Integrity
Authentication
Anonymity
Non-repudiation
Time stamping

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Symmetric cryptography
Asymmetric cryptography
Cryptographic hash functions
Random Number Generators

22.10.2024

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

National Institute of Technology (NIST)
= U.S. Government Federal Information Processing Standards (FIPS)

Internet Engineering Task Force (IETF)

International Organization for Standardization (ISO)

= https://webstore.ansi.org/industry/software/encryption-cryptography
National Standards

European Union Agency for Network and Information Security
(ENISA)

= https://www.enisa.europa.eu/topics/data-protection/security-of-personal-
data/cryptographic-protocols-and-tools

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://webstore.ansi.org/industry/software/encryption-cryptography
https://www.enisa.europa.eu/topics/data-protection/security-of-personal-data/cryptographic-protocols-and-tools
https://www.enisa.europa.eu/topics/data-protection/security-of-personal-data/cryptographic-protocols-and-tools

Guidelines -

Examples

= https://csrc.nist.gov/Projects/Cryptographic-Standards-and-
Guidelines

= https://www.owasp.org/index.php/Guide to Cryptography

= https://www.enisa.europa.eu/publications/algorithms-key-
sizes-and-parameters-report/at download/fullReport

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

https://csrc.nist.gov/Projects/Cryptographic-Standards-and-Guidelines
https://csrc.nist.gov/Projects/Cryptographic-Standards-and-Guidelines
https://www.owasp.org/index.php/Guide_to_Cryptography
https://www.enisa.europa.eu/publications/algorithms-key-sizes-and-parameters-report/at_download/fullReport
https://www.enisa.europa.eu/publications/algorithms-key-sizes-and-parameters-report/at_download/fullReport

Communication Protocols

= Transport Layer Security (TLS)
= |Psec
= Wireguard

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Trusted Platform Module (TPM)
Hardware Security Modules (HSM)
Secure Elements

Trusted Execution Environment (TEE)
Root of Trust

22.10.2024

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Password-based authentication
Multi-factor authentication
Certificate-based authentication
Biometric authentication
Token-based authentication

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Attribute based
Claims based Approach

Group/Role based Approach
Rule based Approach

22.10.2024

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Asymmetric vs symmetric
Key generation

Key distribution

Key storage

Key destruction

22.10.2024

Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

YA
SO
A

22.10.2024 Yagoba GmbH, Austria, www.yagoba.com, info@yagoba.com

Plan and plan for change

Utilize your threat model and risk assessment in the later
phases

Know your types of requirements
Security requirements need to be traceable and testable
Apply design principles to achieve Security by Design

Do not reinvent the wheel and use well established security
mechanisms

	Slide 1: Secure Product Lifecycle
	Slide 2: Today‘s Agenda
	Slide 3: Communication
	Slide 4: Secure Product Lifecycle
	Slide 5: Planning
	Slide 6: Planning: Best Practices
	Slide 7: Recap
	Slide 8: Recap
	Slide 9: Secure Development Lifecycle
	Slide 10: Glossary
	Slide 11: Requirement Management
	Slide 12: It’s not a bug, it’s feature…no wait, it’s a bug
	Slide 13: Types of software requirements
	Slide 14: Examples
	Slide 15: Examples
	Slide 16: Requirements matter
	Slide 17: Security requirements
	Slide 18: Security Quality Requirements Engineering (SQUARE)
	Slide 19: SQUARE – Elicitation and Analysis Process
	Slide 20: Requirement Engineering Tasks
	Slide 21: Requirement Management Tasks
	Slide 22: Requirements Traceability Management
	Slide 23: Security Requirements Traceability Matrix (SRTM)
	Slide 24: SRTM Example
	Slide 25: SECURE DESIgn
	Slide 26: Glossary
	Slide 27: Secure Development Lifecycle
	Slide 28: Meaning of Security by Design
	Slide 29: Goals
	Slide 30: Steps
	Slide 31: Minimize Attack Surface
	Slide 32: Attack Surfaces
	Slide 33: Minimize Attack Surface
	Slide 34: Attack Surfaces
	Slide 35: Defense in Depth
	Slide 36: Ensure Confidentiality
	Slide 37: Ensure Integrity
	Slide 38: Ensure authenticity & non-repudiation
	Slide 39: Secure Communication
	Slide 40: Programming Language
	Slide 41: Input Validation
	Slide 42: Secure error handling
	Slide 43: Don‘t invent your own…
	Slide 44: Further considerations
	Slide 45: Defensive Programming
	Slide 46: Defensive Programming
	Slide 47: Defensive Programming
	Slide 48: Key Principles
	Slide 49: Defensive Programming
	Slide 50: Defensive Programming
	Slide 51: Security MECHANISMs
	Slide 52: Overview
	Slide 53: Cryptography
	Slide 54: Cryptography
	Slide 55: Cryptographic Standards
	Slide 56: Guidelines
	Slide 57: Communication Protocols
	Slide 58: Hardware Security
	Slide 59: Authentication
	Slide 60: Authorization
	Slide 61: Key Management
	Slide 62: Summary
	Slide 63: First Stages of a SPLC

