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Recap www.tugraz.at
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• Power analysis of symmetric crypto implementations

• DPA: Generic, yet powerful

• Templates: More assumptions, but even stronger attacks
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But we want to be the good guys! www.tugraz.at

• We want to build secure devices

• Protect against all sorts of side-channels

(and fault attacks)

• Understanding and designing attacks is necessary

• Only then we can construct countermeasures
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Recall: Scenario www.tugraz.at

• Device running crypto implementation

• Attacker wants to recover key

• Now: Countermeasures for crypto implementations

• Tailored for crypto

• To some extent applicable to non-crypto
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Constant Time/Control-flow

Algorithms



The Obvious One www.tugraz.at

RSA Square & Multiply
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• Constant runtime algorithms

• Defeates timing attacks

• Constant control flow

• Defeates timing/cache attacks
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Constant Runtime & Control Flow www.tugraz.at

• No branching on secret data

• Constant instruction sequence but different data

• Mind your hardware!

• Table lookups depending on secret data

→ Cache attacks! Hardware inserts ”implicit“ branch!

• Jump between idential code blocks with different constants

→ Pipeline flush!

• No trivial ”dummy“ operations to compensate

• E.g. insert NOPs to pad out

• Detectable with power consumption
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Pipelining www.tugraz.at

• Exact same instructions in block1, block2:

• But different constants

• Pipelining causes variable-time behavior

:

cmp eax, 1

jne block2

block1:

mov eax, 1

shr ebx, 4

xor dax, ebx

:

jmp end

block2:

mov eax, 2

shr ebx, 4

xor dax, ebx

:

jmp end

end:

:
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Constant Runtime & Symmetric Crypto www.tugraz.at

• No table lookups depending on secrets, e.g.: SubBytes

• At least on devices with cache (even some µC can have them. . .)

• Alternative: Arithmetic descriptions of SubBytes

• AES: SubBytes ≈ Inversion in GF(28)

• Can be done in constant time with e.g., Little Fermat: x−1 = x254

• Bitslicing: Find representation using bitwise operations

• AND, XOR, . . .

• Can be executed in parallel for multiple state bytes

• More on that next time!
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Constant Runtime & Symmetric Crypto www.tugraz.at

• More recent cryptographic schemes:

→ S-box (SubBytes) already described that way

• Keccak hash function

(Winner in the SHA3 competition)

• Ascon AEAD scheme

(Winner in the CAESAR competition)

Keccak S-box
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Constant-time crypto prevents many attacks (caches, timing,. . .)

. . . but not data-leakage → Power Analysis
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Protocol Countermeasures



Protocol-Level Countermeasure: Frequent Key Update www.tugraz.at

• DPA requires multiple encryptions with

constant key

• Idea: Use key only for very small number of
encryptions!

• 2 encryptions per key:

1. encrypt data

2. generate new key

• → not enough information for DPA
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Protocol-Level Countermeasure: Frequent Key Update www.tugraz.at

• Problems:

• Usually requires synchronization of sender and receiver

• Protocol and use-case specific

• Exceptions exist:

• ISAP AEAD scheme:

(NIST LWC standardization finalist)

• Out-of-the-box DPA protection without further

countermeasures

• Standard AEAD interface (no synchronization needed)
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Algorithm-level Countermeasures



Scenarios www.tugraz.at

Unprotected

Cryptographic
Device

Intermediate
Value

Power
Consumption

processes

influences

Hiding

Cryptographic
Device

Intermediate
Value

Power
Consumption

processes

influences

Masking

Cryptographic
Device

Intermediate
Value

Power
Consumption

processes

influences

13 Rishub Nagpal — IAIK – Graz University of Technology



Hiding www.tugraz.at

• Hide (reduce) the data-dependent power consumption

Cryptographic
Device

Intermediate
Value

Power
Consumption

processes

influences
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Make Power Consumption Constant www.tugraz.at

• Dedicated logic styles (Dual-Rail Precharge)

• Precharge: Set wires to a fixed value (e.g. 0)

• Dual-Rail: Evaluate both f and ¬f
• → Overall switching activity is constant

• Vastly improved security, but still problems

• Expensive (chip size, runtime, development)

• No perfect balancing possible (manufacturing variations)

• Highly localized measurements might still work
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Hiding in Time Dimension www.tugraz.at
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• Assumption of DPA:

• Same operation at same instant in time

• Break assumption!
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Hiding in Time - Methods www.tugraz.at
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• Insert random number of dummy operations

• Caution: must be the same basic operation

(NOP and true S-box lookup are distinguishable → perform S-box on dummy data)

• Total number of operations constant for all invocations

(otherwise runtime gives away information)

• Shuffle the operations!

• Process bytes in different order each time (in SubBytes, MixColumns. . .)

• Limited by implemented algorithm (AES: 16 positions for SB, 4 positions for MC)

• Combination of both

• e.g., 8 dummy S-boxes, then shuffle all 24 (dummy + real) S-boxes
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Data leaks twice! (at least) www.tugraz.at
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• Data leaks at each access

• AES: Compute S-box output, change address in ShiftRows, input to MixColumns

• Protecting just one operation (e.g., shuffling S-boxes) is pointless!

• Beware: 16x S-box, but only 4x MixColumns
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Implementation of Shuffling www.tugraz.at

• Goal: compute 16 S-boxes in random order (each round)

• Random starting index (RSI)

• Sample random index r ∈ [0, 15]

• For i = 0 . . . 15 : compute S-box at (r + i mod 16)

• Problem: only 16 possibilities

• Recover most likely r with template attack (attack addresses)

• Random Permutation (RP)

• Generate a random 16-permutation (vector p containing 0 . . . 15 in random order)

• 16! ≈ 244 possibilities

• For i = 0 . . . 15 : compute S-box at p(i)

• Recover most likely r with template attack (attack addresses)
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The Fisher-Yates Shuffle www.tugraz.at

• Efficient algorithm for generating a random permutation:

Initialize p with 0...15

for i from n-1 downto 1 do:

j = random integer in [0,i]

exchange p[j] and p[i]

• Sampling in [0, i ] can be tricky. . .

• r mod (i + 1) → mod not constant time!

• Replace with [0, n − 1]

much faster but bias → side-channel leak
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Effect on DPA www.tugraz.at

• DPA still possible, but increased noise

• ρ goes down linearly with #possible positions

• → #traces grows quadratically
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Attacking Shuffling www.tugraz.at

• Windowing

• Sum up power consumption over all

possible positions

• Perform DPA on processed traces

• Result: ρ goes down with square

root of #possible positions

• → Only linearly more traces!

• But still. . .

• Finding all positions might not be

easy

• Still effective in combination with

other countermeasures

No Preprocessing:

1,2,4 S-boxes
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Shuffling and Algebraic Attacks www.tugraz.at

• Algebraic/Analytical Attacks

• Perform template attack

• Plug values into equations describing AES

• Solve equations (e.g., SAT solvers, graphical models,. . .)

• Often just 1 (averaged) trace

• Examples:

• Measure Hamming weights in AES key schedule to reduce keyspace to bruteforce

complexity

• Collision attacks: Detect that two S-boxes have same input by comparing traces and

building equations that can be solved
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Shuffling and Algebraic Attacks cont. www.tugraz.at

• Algebraic attacks are very noise sensitive

• Some need perfect Hamming weights, collisions with 100% certainty,. . .

• Single error → attack fails

• Others can deal with some errors

• Shuffling is very effective against algebraic attacks!

• 2 S-boxes collide → but which?

• Hamming weights of round keys → but in which order?
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Masking (Secret Sharing) www.tugraz.at

• Operate on randomized intermediates

• Side-channel information on randomized intermediate does

not help attacker

• But still require correct algorithm output

Cryptographic
Device

Intermediate
Value

Power
Consumption

processes

influences

Randomized
Value
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Secret Sharing Intuition www.tugraz.at

• We want to compute f on input x and secret s . . .

• But avoid using s directly f (x , s) = y

• Idea: Split s into e.g. 3 shares s1, s2, s3 such that:

• Individual shares do not reveal s

• Each 2-combination of shares does not reveal s

• The computed y1, y2, y3 can be combined to y

• For technical reasons:

• Split x into 3 shares x1, x2, x3 as well

f (x1, s1) = y1

f (x2, s2) = y2

f (x3, s3) = y3

y = y1 ◦ y2 ◦ y3

26 Rishub Nagpal — IAIK – Graz University of Technology
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Secret Sharing Intuition www.tugraz.at

• Application to crypto operations:

• Split key k into k1, k2, k3
• Split plaintext x into x1, x2, x3
• Compute ciphertext y = y1 ◦ y2 ◦ y3
• (Use new shares for each encryption!)

enc(x1, k1) = y1

enc(x2, k2) = y2

enc(x3, k3) = y3

y = y1 ◦ y2 ◦ y3

• But we cannot distribute the computation

over multiple devices. . .

• So we do secret sharing with ourself!?

• Yeah! Remember: k1,k2,k3 →

27 Rishub Nagpal — IAIK – Graz University of Technology
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Masking Prerequisite www.tugraz.at

• Required condition for masking to protect against DPA:

• No joint power consumption of shares

• (No errors in masking scheme and in implementation)

• For attack: Force violation by joining power consumptions up again
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Masking: Two Cases www.tugraz.at
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Can we still attack that? www.tugraz.at

• Sequential computation

• Shares processed at different time

• Attack: Combine them again

• Identify times of processing

• Cut traces and get multiple power

measurements

• Combine them together

• Combination function

• Chosen s.t. we learn about k

Combine︷ ︸︸ ︷
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Higher-Order DPA www.tugraz.at

1. Preprocessing

• Use a combination function to combine points in trace

2. DPA attack

• Perform a standard (first-order) DPA on preprocessed traces

• Nomenclature:

• ”Higher-order“: prediction and/or dependence on both multiple shares

• Just using multiple points is not necessarily ”higher order“

(e.g., template attacks)
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Higher-Order DPA: Preprocessing www.tugraz.at

• First hurdle:

• Attacker usually does not know a-priori when shares are processed

• ”Solution“: Pair-wise combination of large range of points in trace

• → Quadratic growth of computational complexity

• Designer: Use that, make it hard to find out when shares are processed

• Combination of two points

• Assumption: Hamming-weight leakage

• → At correct point combination, we get noisy leakage of the shares

• Want: Combination correlates with HW(v)
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Higher-Order DPA: Combination Function www.tugraz.at

• Addition?

• Correlation ρ(HW(v), HW(v1) + HW(v2)) = 0

• → Attack fails

• Better (ideal) Centered Product Combination

• Centered: Subtract mean from each point in time

• Product: Multiply sample values with each other

• Example with 8 bits (no noise)

• Mean m = (HW (0 . . . 255)) = 4

• Combined power pc = (HW (v1)−m)× (HW (v2)−m)

• ρ(HW (v), pc) = −0.35
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Higher-Order Template Attacks www.tugraz.at

• What about template attacks?

• Either: Templates on preprocessed traces

• Both profiling and attacking

• Or: Templates on each share

• Get two probability vectors: p(v1|t), p(v2|t) for all values of v1, v2
• Combine probabilities:

p(v |t) =
∑

(v1,v2):v1⊕v2=v

p(v1|t)p(v2|t)
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Masking: Two Cases www.tugraz.at

AES
ENC

p

c

k AES
DEC

c

p

k

Sub
Bytes

pi

ki

xi

d0

d1

:

dD

k0 k1 .. kK

Crypto 
Algorithm

x0,0

x1,0

:

xD,0

x0,1

x1,1

:

xD,1

..

..

:

..

x0,K

x1,K

:

xD,K

Power 
Model

h0,0

h1,0

:

hD,0

h0,1

h1,1

:

hD,1

..

..

:

..

h0,K

h1,K

:

hD,K

Plain/
Ciphertext

Key
candidates

Hypothetical 
processed values

(D x K)

Hypothetical power 
consumption

Time (1..L)

Measurements
(1..D)

Power Consumption
(D x L)

Hypothetical power 
consumption (D x K)

Statistical
Analysis

Time (1..L)

Key Hypothesis
(1..K)

Score (K x L)

Key Hypothesis (1..K)

Measurements
(1..D)

• Sequential processing of shares

(typical in software)
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• Parallel processing of shares

(typical in hardware)

• What about this case?
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Higher-Order DPA: Parallel Case www.tugraz.at

• Good for attacker: Shares already leak at same time

• → No need to combine all possible points

• Bad for attacker: Power consumption adds up. . .

• Power ≈ HW (v1) + HW (v2)

• But correlation ρ(HW(v), HW(v1) + HW(v2)) = 0 . . .

• Solution: Squaring traces

• ρ(HW (v), (HW (v1) + HW (v2))
2) = −0.04

• A lot lower, but it works. . .

36 Rishub Nagpal — IAIK – Graz University of Technology



Higher-Order DPA: Parallel Case www.tugraz.at

• Good for attacker: Shares already leak at same time

• → No need to combine all possible points

• Bad for attacker: Power consumption adds up. . .

• Power ≈ HW (v1) + HW (v2)

• But correlation ρ(HW(v), HW(v1) + HW(v2)) = 0 . . .

• Solution: Squaring traces

• ρ(HW (v), (HW (v1) + HW (v2))
2) = −0.04

• A lot lower, but it works. . .

36 Rishub Nagpal — IAIK – Graz University of Technology



Higher-Order DPA: Parallel Case www.tugraz.at

• Good for attacker: Shares already leak at same time

• → No need to combine all possible points

• Bad for attacker: Power consumption adds up. . .

• Power ≈ HW (v1) + HW (v2)

• But correlation ρ(HW(v), HW(v1) + HW(v2)) = 0 . . .

• Solution: Squaring traces

• ρ(HW (v), (HW (v1) + HW (v2))
2) = −0.04

• A lot lower, but it works. . .

36 Rishub Nagpal — IAIK – Graz University of Technology



Higher-Order Masking www.tugraz.at

• Masked: harder to attack, but still possible...

• Add more masks!

• Same attacks still apply, but even harder

• d-th order masking

• Withstands d-th order attacks (e.g., combine d points, take trace to d-th power)

• Needs (at least) d + 1 shares

• Security gain: exponential in d

• (More information next lecture)
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Countermeasures - Recap www.tugraz.at

• Main techniques

• Constant time/control-flow implementations

• Protocol-level: Key update

• Algorithm-level: Hiding, Masking

• Ideal: Mixture of countermeasures

Remember : Each countermeasure can be broken!

just a matter of effort. . .

Make sure that attack effort greater than value of asset

38 Rishub Nagpal — IAIK – Graz University of Technology
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Case-study: Asymmetric Crypto



Exponentiation Algorithms www.tugraz.at
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ow
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• RSA decryption: m = cd mod n (d = private key)

• Left-to-right square-and-multiply exponentiation:

m = c //init

for i = log2(d)-1...0 //loop over bits

m = m*m mod n //square

if di == 1 //if bit is set

m = m*c mod n //multiply

return m
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Constant-Time Exponentiation www.tugraz.at

• Montgomery ladder

R0 = 0, R1 = c //init

for i = log2(d)-1...0 //loop over bits

t = di //get the value of the bit

R1-t = R0 * R1 mod n //always multiply

Rt = Rt * Rt mod n //always square

return R0

• Always same operations, just different operands (addresses)

40 Rishub Nagpal — IAIK – Graz University of Technology



Constant-Time Exponentiation www.tugraz.at

• Montgomery ladder

R0 = 0, R1 = c //init

for i = log2(d)-1...0 //loop over bits

t = di //get the value of the bit

R1-t = R0 * R1 mod n //always multiply

Rt = Rt * Rt mod n //always square

return R0

• Always same operations, just different operands (addresses)

40 Rishub Nagpal — IAIK – Graz University of Technology



Constant-Time Reductions www.tugraz.at

s = a + b mod q

int s = a + b;

if (s >= q)

s -= q;

int s = a + b;

int m = s - (q + 1);

m >>= 31;

s -= q & (!m);

• Dedicated algorithms for efficient reductions after multiplications

• Make them constant time using similar tricks

• Still does not help against data leakage (DPA etc.). . .
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Asymmetric Crypto and Blinding www.tugraz.at

• Blinding: Similar to masking

• RSA exponent blinding (additive):

• d ′ = d + x(p − 1)(q − 1) = d + xϕ(n)

• cd
′
= cd mod n

• RSA message blinding (multiplicative):

• Message c , mask x → c ′ = c + xe

• (c ′)d = cdx mod n
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Takeaways www.tugraz.at

1. Public-key crypto can have different side-channel challenges

• Constant-time very important

• Attacker often limited to single execution

• Even without blinding, many protocols use one-time keys

• But longer traces, intermediates used very often

• Somewhat different protection techniques

2. There are many attacks outside of DPA / Templates

• Algebraic attacks, horizontal attacks, collision correlation attacks,...

• “Simple” side-channel analysis can be anything but ...
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Thank you!

Questions:

rishub.nagpal@iaik.tugraz.at

Discord

mailto:rishub.nagpal@iaik.tugraz.at
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