

Power Analysis Attacks

Side-Channel Security

Rishub Nagpal

May 16, 2024

IAIK - Graz University of Technology

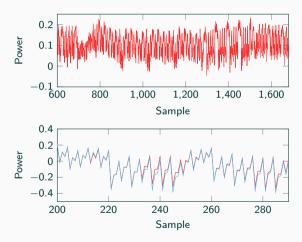
Recap

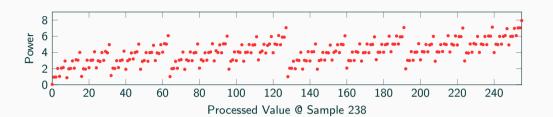
Non-Profiled Attacks

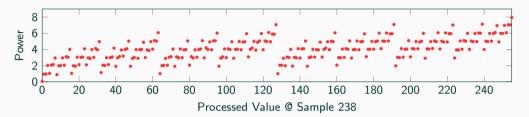
Profiled Attacks

Recap

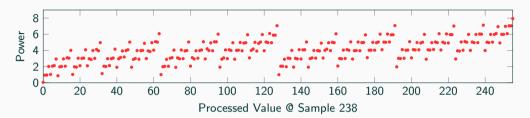
- Power consumption depends on
 - Executed operation
 - Processed data
- Now: Exploitation







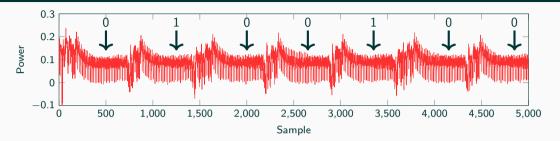
- How many measurements (traces) do we have?
 - One: Only a single execution of the cryptographic algorithm
 - Many: Record many executions, each using different inputs



- How many measurements (traces) do we have?
 - One: Only a single execution of the cryptographic algorithm
 - Many: Record many executions, each using different inputs
- Do we perform profiling?
 - YES: Value x causes power consumption p
 - NO: We use a model e.g. $p(x) \approx \text{Hamming weight}(x)$

	Non-profiled	Profiled
	Attacks	Attacks
One or few observations with fixed data	Simple SCA	Profiled simple SCA
Many observations with varying data	Differential SCA	Profiled differential SCA

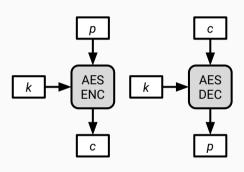
Non-Profiled Attacks

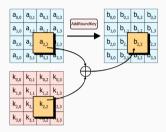


- Derive key directly from one or very few power traces
- Often requires detailed knowledge about the implementation and more complex statistical models
- No profiling
- But what about symmetric crypto?
 - Constant control flow, only data leakage

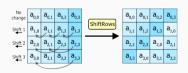
	Non-profiled Attacks	Profiled Attacks
One or few observations with fixed data	Simple SCA	Profiled simple SCA
Many observations with varying data	Differential SCA	Profiled differential SCA

- Advanced Encryption Standard
- Block cipher with key size: 128/192/256 bit
- Symmetric
- State size: 128 bit
 - ullet Organized as 4 imes 4 bytes
- 4 round functions
 - SubBytes
 - ShiftRows
 - MixColumns
 - AddRoundKey
- 10 rounds in total (+ initial round)

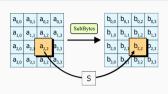




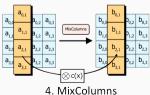
1. AddRoundKey



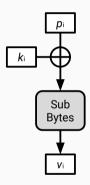
3. ShiftRows



2. SubBytes

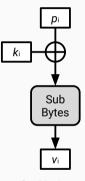


- Initial/first round
- Round key = k
- Other roundkeys are derived from AES key schedule



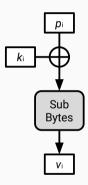
for *i* in 0 . . . 15

• Lets assume we "attack" an AES implementation with a known key...



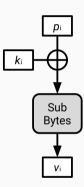
for *i* in 0 . . . 15

- Lets assume we "attack" an AES implementation with a known key...
- We can:
 - can request the encryption of a known plaintext
 - calculate intermediate values of corresponding AES computations
 - For example v_0 with $v_0 = \mathsf{SubBytes}(p_0 \oplus k_0)$
 - predict the power consumption of, e.g., $MOV(v_0)$ with a power model



for *i* in 0 . . . 15

- Lets assume we "attack" an AES implementation with a known key...
- We can:
 - can request the encryption of a known plaintext
 - calculate intermediate values of corresponding AES computations
 - For example v_0 with $v_0 = \mathsf{SubBytes}(p_0 \oplus k_0)$
 - predict the power consumption of, e.g., $MOV(v_0)$ with a power model
- Repeat these steps x-times using different plaintexts
 - → x power traces with x corresponding predictions for the power consumption of MOV(v₀)



for *i* in 0 . . . 15

Rishub Nagpal — IAIK - Graz University of Technology

- For each point in time we have in total x samples
 - Corresponding to the x power traces

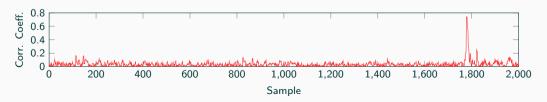
- For each point in time we have in total x samples
 - Corresponding to the x power traces
- We also have in total x power predictions of $\mathtt{MOV}(v_0)$

- For each point in time we have in total x samples
 - Corresponding to the x power traces
- We also have in total x power predictions of $MOV(v_0)$
- Let's correlate them!

- For each point in time we have in total x samples
 - Corresponding to the x power traces
- We also have in total x power predictions of MOV(v_0)
- Let's correlate them!
- But when does the $MOV(v_0)$ occur in the power trace?
 - ⁻_(`\)_/⁻

Preliminaries: Testing Predictions of Power Consumption

- For each point in time we have in total *x* samples
 - Corresponding to the *x* power traces
- We also have in total x power predictions of MOV(v_0)
- Let's correlate them!
- But when does the $MOV(v_0)$ occur in the power trace?
 - ⁻_(`Y)_/⁻
- Let's just try all possible points in time:



• We can model the power consumption of the processing of certain intermediate values!

- We can model the power consumption of the processing of certain intermediate values!
- But we require knowledge of the key to calculate v_0 in first place...
 - $v_0 = \mathsf{SubBytes}(p_0 \oplus k_0)$

- We can model the power consumption of the processing of certain intermediate values!
- But we require knowledge of the key to calculate v_0 in first place...
 - $v_0 = SubBytes(p_0 \oplus k_0)$
 - So far, this is not useful for an attack...

- We can model the power consumption of the processing of certain intermediate values!
- But we require knowledge of the key to calculate v_0 in first place...
 - $v_0 = \mathsf{SubBytes}(p_0 \oplus k_0)$
 - So far, this is not useful for an attack...
- Maybe there is a way to test parts of the key using power side-channels...

- Enumerating all 2¹²⁸ possible keys of AES-128?
 - $\bullet \ \, @\ \, 1 \,\, \text{billion keys} \,\, / \,\, \text{second} \,\, \Rightarrow \, (1 \,\, \text{trillion}) \,\, \times \, (\text{age of universe}) \\$

- Enumerating all 2¹²⁸ possible keys of AES-128?
 - @ 1 billion keys / second \Rightarrow (1 trillion) \times (age of universe)
- Instead: Recover key parts individually
 - 2⁸ possibilities per key byte
 - 16 bytes \rightarrow 4 096 values to test
 - But we can't test just using plain/ciphertexts...

- Enumerating all 2¹²⁸ possible keys of AES-128?
 - @ 1 billion keys / second \Rightarrow (1 trillion) \times (age of universe)
- Instead: Recover key parts individually
 - 2⁸ possibilities per key byte
 - 16 bytes \rightarrow 4 096 values to test
 - But we can't test just using plain/ciphertexts...
- Test them using side-channels!
 - Use information on intermediate values that depend on 1 byte of key!

- 1. Select target operation in the AES algorithm
 - Dependence on inputs and small number of key bits (e.g. 8-bit subkey)

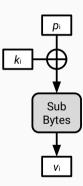
- 1. Select target operation in the AES algorithm
 - Dependence on inputs and small number of key bits (e.g. 8-bit subkey)
- 2. Query device with different inputs and measure power consumption

- 1. Select target operation in the AES algorithm
 - Dependence on inputs and small number of key bits (e.g. 8-bit subkey)
- 2. Query device with different inputs and measure power consumption
- 3. Enumerate all possible values of one subkey
 - 2⁸ = 256 possibilities (hypotheses)

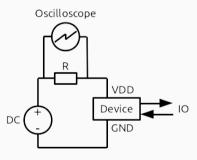
- 1. Select target operation in the AES algorithm
 - Dependence on inputs and small number of key bits (e.g. 8-bit subkey)
- 2. Query device with different inputs and measure power consumption
- 3. Enumerate all possible values of one subkey
 - 2⁸ = 256 possibilities (hypotheses)
- 4. Predict power consumption of targeted operation based on all inputs and the current key hypothesis
 - Use power model such as Hamming weight

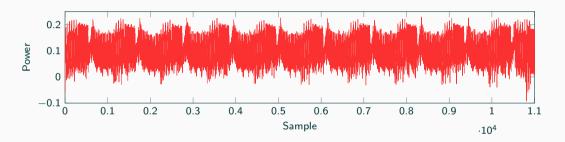
- 1. Select target operation in the AES algorithm
 - Dependence on inputs and small number of key bits (e.g. 8-bit subkey)
- 2. Query device with different inputs and measure power consumption
- 3. Enumerate all possible values of one subkey
 - 2⁸ = 256 possibilities (hypotheses)
- 4. Predict power consumption of targeted operation based on all inputs and the current key hypothesis
 - Use power model such as Hamming weight
- 5. Compare predictions with real measurements
 - Key hypothesis that fits best is most likely correct
 - What "fits best"? → Correlation!

- Should depend on:
 - Small number of key bits (enumerable, e.g. 8)
 - Known and varying data (plain/ciphertext)
- Common choice is SubBytes output of first round
 - ullet Why not output of AddRoundKey? o later

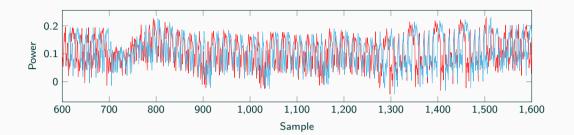


- Query device
- Gather IO plain/ciphertext
- Measure power consumption of en/decryption
 - Voltage over R (shunt resistor) \approx current
 - Oscilloscope measures voltage
 - At least 1 sample per clock cycle
 - Measurement must include the targeted operation



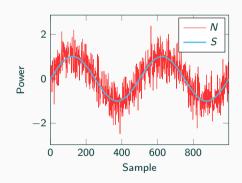


- How to know what part is measured?
 - Visual inspection, trial&error, experience,...

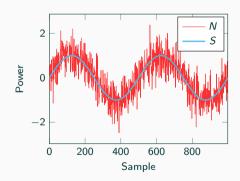


- ullet Traces should be aligned o same operation at same instant in trace
- ullet o Trigger on communication
- ullet o Trigger on trace feature (distinctive pattern) (with oscilloscope support or through post-alignment)

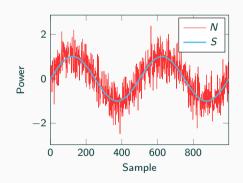
- Side-channels are noisy
 - 1. Exploitable signal S
 - 2. Noise N



- Side-channels are noisy
 - 1. Exploitable signal S
 - 2. Noise N



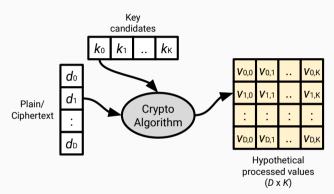
- Side-channels are noisy
 - 1. Exploitable signal S
 - 2. Noise N
- Common metric: Signal-to-Noise-Ratio SNR = σ_S^2/σ_N^2
- ullet Higher SNR o Better attacks



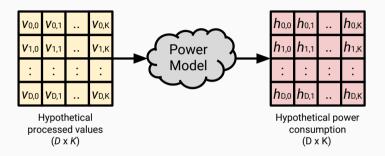
- Averaging
 - Run device multiple times with same inputs
 - ullet Average power consumption o reduce noise
 - σ_N^2 goes down with 1 / #traces (only for electrical / random noise)

- Averaging
 - Run device multiple times with same inputs
 - ullet Average power consumption o reduce noise
 - σ_N^2 goes down with 1 / #traces (only for electrical / random noise)
- Filtering
 - Power side-channel is slow, but sampling can be fast
 - Lower frequencies more informative, higher frequencies more noisy
 - Low-pass filtering analog/digital

- Averaging
 - Run device multiple times with same inputs
 - ullet Average power consumption o reduce noise
 - σ_N^2 goes down with 1 / #traces (only for electrical / random noise)
- Filtering
 - Power side-channel is slow, but sampling can be fast
 - Lower frequencies more informative, higher frequencies more noisy
 - Low-pass filtering analog/digital
- Lots of other signal-processing options...

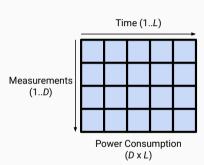


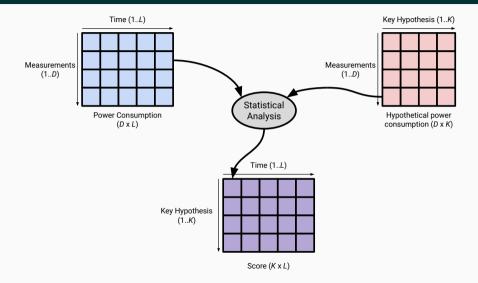
- *D* inputs (#measurements)
- K key hypotheses ($K = 2^8$)
- $D \times K$ hypothetical processed values

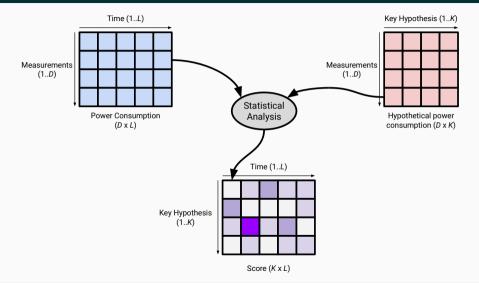


- Common power models
 - Hamming weight (number of set bits)
 - Hamming distance (Hamming weight of XOR difference between two values)

- Trace matrix
 - Each measurement has *L* samples
- Problems:
 - L can be large
 - We have no idea when targeted operation occurs
- Simply test all locations!







- Statistical Analysis via Pearson Correlation Coefficient ρ
 - Linear relationship between 2 random variables (how much do they change together)
 - X: predictions corresponding to one key hypothesis
 - Y: measured samples corresponding to one point in time

$$\rho = \frac{\mathsf{Cov}(X,Y)}{\sqrt{\mathsf{Var}(X) \cdot \mathsf{Var}(Y)}} = \frac{\mathsf{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y} \qquad \begin{array}{l} \mathsf{Var} = \mathsf{Variance}, \\ \mathsf{E} = \mathsf{Expected} \ \mathsf{value}, \\ \sigma = \mathsf{Standard} \ \mathsf{deviation}. \end{array}$$

Cov = Covariance. Var = Variance. $\sigma = Standard deviation.$ $\mu = \mathsf{Mean}$

- ullet Statistical Analysis via Pearson Correlation Coefficient ho
 - Linear relationship between 2 random variables (how much do they change together)
 - X: predictions corresponding to one key hypothesis
 - Y: measured samples corresponding to one point in time

$$\rho = \frac{\mathsf{Cov}(X,Y)}{\sqrt{\mathsf{Var}(X) \cdot \mathsf{Var}(Y)}} = \frac{\mathsf{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

Cov = Covariance, Var = Variance,

E = Expected value,

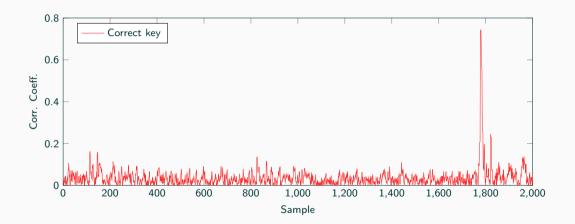
 $\sigma = \mathsf{Standard} \; \mathsf{deviation},$

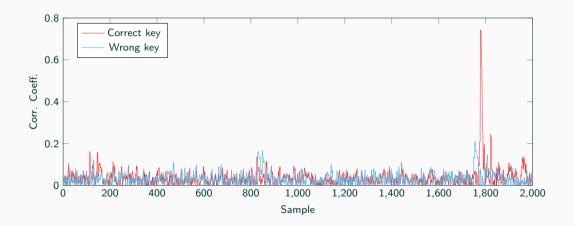
 $\mu = \mathsf{Mean}$

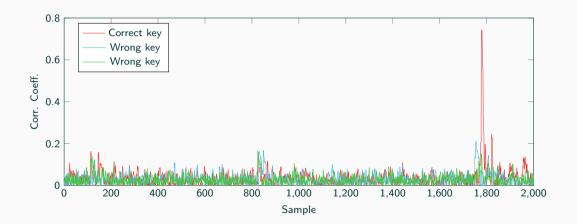
Estimate:

$$r = \frac{\sum_{i}(x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\sum_{i}(x_{i} - \overline{x})^{2}}\sqrt{\sum_{i}(y_{i} - \overline{y})^{2}}}$$

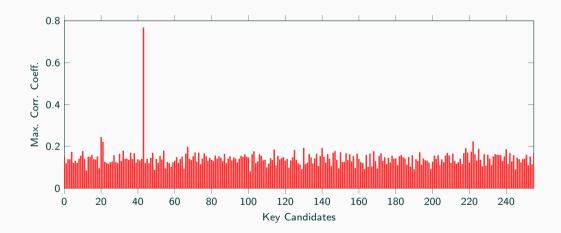
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$





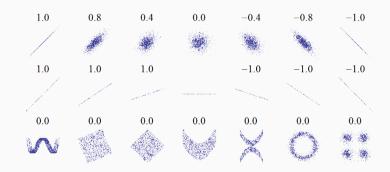


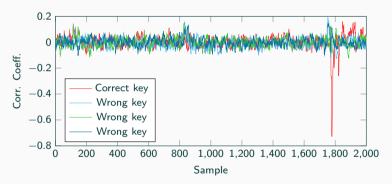




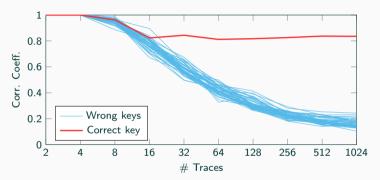
Some Notes on DPA

- $-1 \le \rho(X, Y) \le 1$
- If ρ is -1 or 1 then X is a "linearly scaled version" of Y
- Leakage behaves mostly linear
- ullet ρ is simple and converges fast
- If X and Y are independent then $\rho(X, Y) = 0$
 - Not necessarily true in other direction...





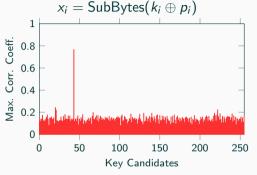
- We care about the *absolute* correlation coefficient
 - ightarrow Strong negative correlation is also good!

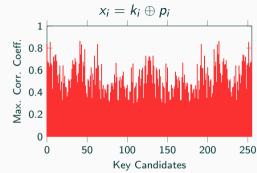


- \bullet Estimating value of ρ requires certain amount of traces
 - ullet Wrong keys approach 0, correct key the real ho_c
 - Intuitive: The lower ρ_c the more traces are required

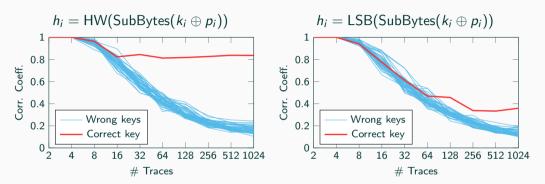
- There exists some fancy maths to determine #traces
 - E.g., based on SNR
 - Which we will not go into now...

- There exists some fancy maths to determine #traces
 - E.g., based on SNR
 - Which we will not go into now...
- Simple rules for #traces
 - Inversely quadratic in $\rho_c: \rho_c/2 \to \# {\sf traces} \times {\sf 4}$
 - Linear in noise: Noise variance \times 2 \rightarrow #traces \times 2





- Intuition: "Similar" keys have similar $x_i = k_i \oplus p_i$
 - Change 1 bit in $k_i \to HW$ only changes by 1
 - ullet Flip all bits in $k_i o$ Correlation in other direction
- SubBytes: Changing 1 input bit affects all output bits in non-linear way



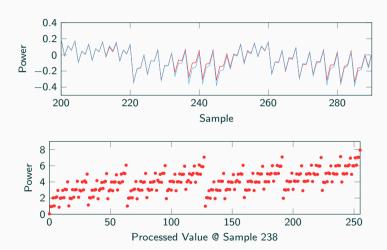
- Choose power model that describes reality best
- Higher correlation → fewer traces

- Requires little assumptions...
 - On the attacked device (power models)
 - On the concrete implementation (when does it leak?)
 - Yet still effective
- But there are also downsides
 - Simplifications that affect performance
 - Not applicable to single traces or multiple traces with constant input
 - Only target operations that depend on few key bits

	Non-profiled Attacks	Profiled Attacks
One or few observations with fixed data	Simple SCA	Profiled simple SCA
Many observations with varying data	Differential SCA	Profiled differential SCA

• Characterize (profile) power consumption of target device

Profiled Attacks



- ullet DPA uses simplifications o not all information in trace is exploited
 - Power models, leakage on single point in time, etc.
 - ullet Profiled attacks are more powerful o worst-case security evaluations

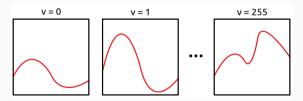
- ullet DPA uses simplifications o not all information in trace is exploited
 - Power models, leakage on single point in time, etc.
 - ullet Profiled attacks are more powerful o worst-case security evaluations
- DPA cannot be run on a single measurement
 - "Differential" information between traces

- ullet DPA uses simplifications o not all information in trace is exploited
 - Power models, leakage on single point in time, etc.
 - ullet Profiled attacks are more powerful o worst-case security evaluations
- DPA cannot be run on a single measurement
 - "Differential" information between traces
- DPA requires prediction of values
 - In some scenarios not possible (unknown or low amount inputs/outputs)

- ullet DPA uses simplifications o not all information in trace is exploited
 - Power models, leakage on single point in time, etc.
 - ullet Profiled attacks are more powerful o worst-case security evaluations
- DPA cannot be run on a single measurement
 - "Differential" information between traces
- DPA requires prediction of values
 - In some scenarios not possible (unknown or low amount inputs/outputs)
- Downsides
 - Assumes attacker has access to same or similar device
 - Can run it with known inputs (including key)
 - Many profiling traces needed

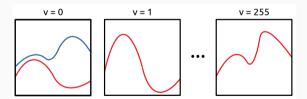
1. Pick an operation (e.g. MOV)

- 1. Pick an operation (e.g. MOV)
- 2. Characterize leakage
 - ullet Profile power consumption for each possible processed value v
 - Record traces with all inputs known, group according to v
 - We call a profile a "template"



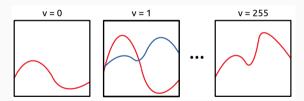
3. Attack phase

- Compare (match) measured traces to all templates
- Use v which best fits, process probabilities...



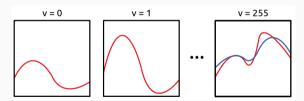
3. Attack phase

- Compare (match) measured traces to all templates
- Use v which best fits, process probabilities...



3. Attack phase

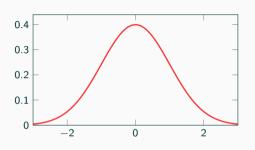
- Compare (match) measured traces to all templates
- Use v which best fits, process probabilities...

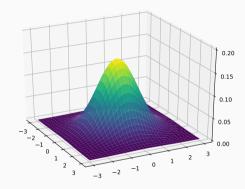


- Profiling: Estimation/learning of a Probability Density Function (PDF)
 - ullet For each v and each trace t: estimate P(T=t|v)

- Profiling: Estimation/learning of a Probability Density Function (PDF)
 - For each v and each trace t: estimate P(T = t|v)
- Attack: Evaluation of PDFs at measured samples
 - Record trace t_a
 - Compute $P(T = t_a|v)$ for each v (probability that t is measured given v)

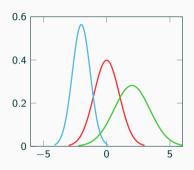
- Profiling: Estimation/learning of a Probability Density Function (PDF)
 - For each v and each trace t: estimate P(T = t|v)
- Attack: Evaluation of PDFs at measured samples
 - Record trace t_a
 - ullet Compute $P(T=t_a|v)$ for each v (probability that t is measured given v)
- Aka: Machine Learning



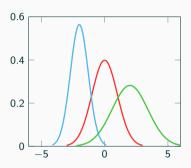


- We still need some assumptions to allow efficient profiling
- ullet Good approximation: Traces follow (multivariate) Gaussian (i.e., normal) distribution ${\cal N}$

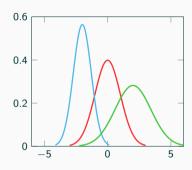
- PDF characterized by
 - ullet Mean μ
 - Std. dev. σ , variance σ^2



- PDF characterized by
 - Mean μ
 - Std. dev. σ , variance σ^2
- For each possible value *v* estimate:
 - Means $\mu_0, \mu_1, \ldots, \mu_v$
 - Std. dev. $\sigma_0, \sigma_1, \ldots, \sigma_v$



- PDF characterized by
 - Mean μ
 - Std. dev. σ , variance σ^2
- For each possible value *v* estimate:
 - Means $\mu_0, \mu_1, \ldots, \mu_v$
 - Std. dev. $\sigma_0, \sigma_1, \ldots, \sigma_v$
- Intuitive interpretation
 - μ_i = true power consumption of data i
 - $\sigma_i = \text{noise}$

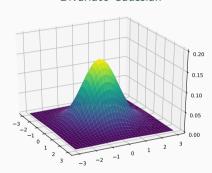


$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp^{-(x-\mu)^2/2\sigma^2}$$

Estimation:
$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

- Considers multiple samples
- PDF characterized by:
 - Mean vector $\mathbf{m} = (m_1, m_2, \ldots)^\mathsf{T}$
 - Cov matrix $\mathbf{C} = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots \\ c_{2,1} & c_{2,2} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$

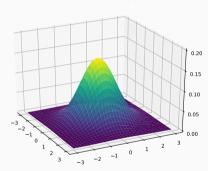
Bivariate Gaussian



Considers multiple samples

- PDF characterized bv:
 - Mean vector $\mathbf{m} = (m_1, m_2, \ldots)^{\mathsf{T}}$
 - Cov matrix $\mathbf{C} = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots \\ c_{2,1} & c_{2,2} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$
- Again for each possible value:
 - Means $\mathbf{m}_0, \mathbf{m}_1, \dots, \mathbf{m}_v$
 - Cov Matrixes C_0, C_1, \ldots, C_v

Bivariate Gaussian

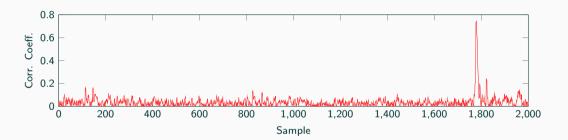


$$f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \cdot \det(\mathbf{C})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m})^\mathsf{T} \cdot \mathbf{C}^{-1}(\mathbf{x} - \mathbf{m})\right)$$

- Can't model the entire trace as multivariate Gaussian
 - **C** is $(L \times L)$ matrix . . .
 - C tends to be badly conditioned (it is close to being singular)
 - ightarrow numerical problems with matrix inversions

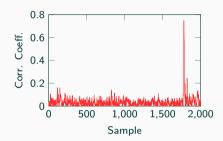
- Can't model the entire trace as multivariate Gaussian
 - **C** is $(L \times L)$ matrix . . .
 - C tends to be badly conditioned (it is close to being singular)
 - ightarrow numerical problems with matrix inversions
- Solution 1: Dimensionality reduction
 - Generic techniques such as Principal Component Analysis (PCA)
 - Selecting a subset of samples: Points-Of-Interest (POI)

- Can't model the entire trace as multivariate Gaussian
 - **C** is $(L \times L)$ matrix . . .
 - C tends to be badly conditioned (it is close to being singular)
 - ightarrow numerical problems with matrix inversions
- Solution 1: Dimensionality reduction
 - Generic techniques such as Principal Component Analysis (PCA)
 - Selecting a subset of samples: Points-Of-Interest (POI)
- Solution 2: Reduced templates
 - Assume "independent" samples



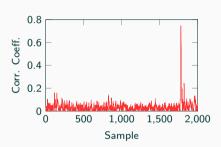
- \bullet Only small set of samples has information about v
 - As seen during DPA
- "Feature Selection" in Machine Learning

- 1. Use points of highest correlation
 - Does not capture non-HW leakages
 - Does not capture leakages for f(v)



- 1. Use points of highest correlation
 - Does not capture non-HW leakages
 - Does not capture leakages for f(v)

- 2. Welch t-test
 - Statistical test if two populations have same mean
 - Use points where means significantly differ



$$\frac{m_i - m_j}{\sqrt{\frac{\sigma_i^2}{n_i} + \frac{\sigma_j^2}{n_j^2}}}$$

- Create multiple groups of traces corresponding to different cipher inputs
 - Each group consists of the same amount of traces
 - E.g.: 2 groups: random inputs, some fixed input
 - E.g.: 256 groups: 0x0000..., 0x0100..., 0x0200..., ...
- ullet For each group of traces, and each point in time, pre-compute mean m and std. dev. σ

- Create multiple groups of traces corresponding to different cipher inputs
 - Each group consists of the same amount of traces
 - E.g.: 2 groups: random inputs, some fixed input
 - E.g.: 256 groups: 0x0000..., 0x0100..., 0x0200..., ...
- For each group of traces, and each point in time, pre-compute mean m and std. dev. σ
- For each point in time:

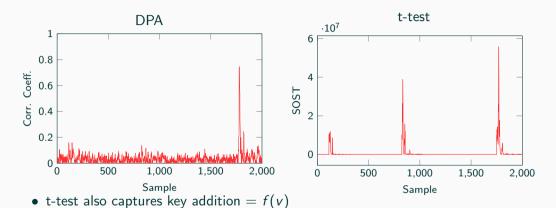
 - If you only use 2 groups this boils down to the t-test formula from before

- Create multiple groups of traces corresponding to different cipher inputs
 - Each group consists of the same amount of traces
 - E.g.: 2 groups: random inputs, some fixed input
 - E.g.: 256 groups: 0x0000..., 0x0100..., 0x0200..., ...
- For each group of traces, and each point in time, pre-compute mean m and std. dev. σ
- For each point in time:

 - If you only use 2 groups this boils down to the t-test formula from before

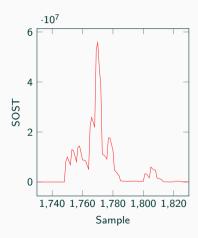
• Perform pair-wise t-tests between all groups
• Sum up the squares of t-scores
$$\rightarrow$$
 SOST
$$\sum_{i,j=1}^{\#\text{groups}} \left(\frac{m_i - m_j}{\sqrt{\frac{\sigma_i^2}{n_i} + \frac{\sigma_j^2}{n_j}}} \right)^{-1} \text{ for } i \geq j$$
• If you only use 2 groups this boils down to the

- Captures all first-moment (mean) leakage
- Automatically captures f(v)

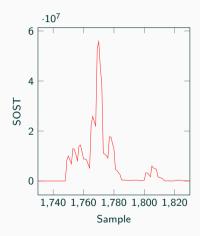


• t-test has similar peaks, but different relative heights

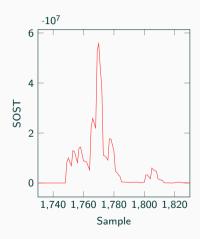
• Don't select too many points!



- Don't select too many points!
- Don't use points close to each other
 - High linear dependency
 - ightarrow badly conditioned ${f C}$



- Don't select too many points!
- Don't use points close to each other
 - High linear dependency
 - ightarrow badly conditioned ${f C}$
- Some simple guides for power SCA
 - Only 1 point per clock cycle (power is slow)
 - Only use distinctive peaks of t-score



- Reduced Templates
 - ullet Assume samples are linearly independent o all covariances are 0
 - ullet Normalize traces: Divide by σ at each point in time $o \sigma = 1$ at all times
 - \rightarrow **C** becomes identity matrix **I**
 - Reduces complexity of profiling and attacking
 - But somewhat worse performance (or complete failure)

- Reduced Templates
 - ullet Assume samples are linearly independent o all covariances are 0
 - Normalize traces: Divide by σ at each point in time $\to \sigma = 1$ at all times
 - \rightarrow **C** becomes identity matrix **I**
 - Reduces complexity of profiling and attacking
 - But somewhat worse performance (or complete failure)
- Combine templates with power models
 - Build templates for Hamming weights instead of values
 - e.g., 9 instead of 256 templates

• Goal: Evaluate PDFs at observed power

- Goal: Evaluate PDFs at observed power
- Evaluate Gaussian, where **x** is the power, for each template:

$$f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \cdot \det(\mathbf{C})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m})^\mathsf{T} \cdot \mathbf{C}^{-1}(\mathbf{x} - \mathbf{m})\right)$$

- Goal: Evaluate PDFs at observed power
- Evaluate Gaussian, where **x** is the power, for each template:

$$f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \cdot \det(\mathbf{C})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m})^\mathsf{T} \cdot \mathbf{C}^{-1}(\mathbf{x} - \mathbf{m})\right)$$

• Receive $p(t|v_i)$ for $i = 1 \dots V \rightarrow$ likelihood

- Goal: Evaluate PDFs at observed power
- Evaluate Gaussian, where **x** is the power, for each template:

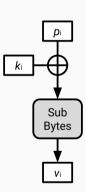
$$f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \cdot \det(\mathbf{C})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m})^\mathsf{T} \cdot \mathbf{C}^{-1}(\mathbf{x} - \mathbf{m})\right)$$

- Receive $p(t|v_i)$ for $i = 1 \dots V \rightarrow \text{likelihood}$
- Alternatively compute $ln(p(t|v_i))$, i.e., the log-likelihood:

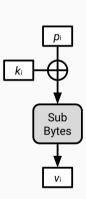
$$\ln p(\mathbf{t}|(v,k)) = -\frac{1}{2} \left(\ln((2\pi)^n \cdot \det(\mathbf{C})) + (\mathbf{t} - \mathbf{m})^\mathsf{T} \cdot \mathbf{C}^{-1} \cdot (\mathbf{t} - \mathbf{m}) \right)$$

- v_i with highest likelihood = most likely value
- Reduced templates: minimal $||(\mathbf{x} \mathbf{m})||^2 = \text{most likely value}$ vector norm: $||\mathbf{x}||^2 = x_1^2 + x_2^2 + x_3^2 + \dots$

- v_i with highest likelihood = most likely value
- Reduced templates: minimal $||(\mathbf{x} \mathbf{m})||^2 = \text{most likely value}$ vector norm: $||\mathbf{x}||^2 = x_1^2 + x_2^2 + x_3^2 + \dots$
- From v to k
 - p is known
 - ullet Each possible value of k o exactly one value of v
 - $p(t|k) = p(t|v = SubBytes(k \oplus p))$



- v_i with highest likelihood = most likely value
- Reduced templates: minimal $||(\mathbf{x} \mathbf{m})||^2 = \text{most likely value}$ vector norm: $||\mathbf{x}||^2 = x_1^2 + x_2^2 + x_3^2 + \dots$
- From v to k
 - p is known
 - ullet Each possible value of k o exactly one value of v
 - $p(t|k) = p(t|v = SubBytes(k \oplus p))$
- Caution: Likelihood ≠ probability
 - We might want $p(v_i|t)$ or $p(k_i|t)$



- Bayes: Update probabilities of A given new observation B
- General form
 - P(A|B) = posterior probability
 - P(B|A) = likelihood
 - P(A) = prior probability

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

- Bayes: Update probabilities of A given new observation B
- General form
 - P(A|B) = posterior probability
 - P(B|A) = likelihood
 - P(A) = prior probability
- In our case:
 - $p(t|k_i) = \text{likelihood from before}$
 - $p(k_i) = prior (uniform)$
 - denom = "normalization"

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

$$p(k_j|\mathbf{t}_i') = \frac{p(\mathbf{t}_i'|k_j) \cdot p(k_j)}{\sum_{l=1}^K (p(\mathbf{t}_i'|k_l) \cdot p(k_l))}$$

	Non-profiled Attacks	Profiled Attacks
One or few observations with fixed data	Simple SCA	Profiled simple SCA
Many observations with varying data	Differential SCA	Profiled differential SCA

- Thus far we used a single attack trace
- Extension to multi-trace setting: Bayesian Updating
 - Update beliefs given new information
 - Use Bayes theorem iteratively
 - Posterior after previous trace
 prior for next trace
 - Update key probabilities for each new trace

$$p(k_j|\mathbf{t}_i') = \frac{p(\mathbf{t}_i'|k_j) \cdot p(k_j)}{\sum_{l=1}^{K} (p(\mathbf{t}_i'|k_l) \cdot p(k_l))}$$

$$p(k_j|\mathbf{t}_i') = \frac{p(\mathbf{t}_i'|k_j) \cdot p(k_j)}{\sum_{l=1}^K (p(\mathbf{t}_i'|k_l) \cdot p(k_l))} \implies p(k_j|\mathbf{T}) = \frac{\left(\prod_{i=1}^D p(\mathbf{t}_i'|k_j)\right) \cdot p(k_j)}{\sum_{l=1}^K \left(\left(\prod_{i=1}^D p(\mathbf{t}_i'|k_l)\right) \cdot p(k_l)\right)}$$

$$p(k_j|\mathbf{t}_i') = \frac{p(\mathbf{t}_i'|k_j) \cdot p(k_j)}{\sum_{l=1}^{K} (p(\mathbf{t}_i'|k_l) \cdot p(k_l))} \Longrightarrow$$

$$p(k_j|\mathbf{t}_i') = \frac{p(\mathbf{t}_i'|k_j) \cdot p(k_j)}{\sum_{l=1}^K (p(\mathbf{t}_i'|k_l) \cdot p(k_l))} \implies p(k_j|\mathbf{T}) = \frac{\left(\prod_{i=1}^D p(\mathbf{t}_i'|k_j)\right) \cdot p(k_j)}{\sum_{l=1}^K \left(\left(\prod_{i=1}^D p(\mathbf{t}_i'|k_l)\right) \cdot p(k_l)\right)}$$

- Caution: numerical problems
 - Use log-likelihood
 - Or do iterative updates

- \bullet For reduced templates (C = I) simplification possible
 - Determine most likely key using least-square test
 - Single trace: Most likely key \rightarrow minimal $||(\mathbf{x} \mathbf{m})||^2$ vector norm: $||\mathbf{x}||^2 = x_1^2 + x_2^2 + x_3^2 + \dots$
 - Multiple traces: Minimal sum $||(\mathbf{x} \mathbf{m})||^2$ over all traces

