Logic and Computability

Topic 1: Theories in Predicate Logic -

 Lazy Encoding Topic 2: Symbolic EncodingBettina Könighofer
bettina.koenighofer@iaik.tugraz.at
Stefan Pranger
stefan.pranger@iaik.tugraz.at

A MATHEMATICAL MODEL IS A POWERFUL TOOL FOR TAKING HARD PROBLEMS AND MOVING THEM TO THE METHODS SECTION.

Plan for Today

- Part 1 - Lazy Encoding / DPLL(T)

- Part 2 - Symbolic Encoding

Plan for Today

- Part 1 - Lazy Encoding / DPLL(T)
- Recap: Theories in Predicate Logic
- Recap: Lazy Encoding and Congruence Closure
- Simplified Version of DPLL(T)
- Discuss via example
- Part 2 - Symbolic Encoding

Plan for Today

- Part 1 - Lazy Encoding / DPLL(T)
- Recap: Theories in Predicate Logic
- Recap: Lazy Encoding and Congruence Closure
- Simplified Version of DPLL(T)
- Discuss via example
- Part 2 - Symbolic Encoding
- Transition systems
- Symbolic representation of sets of states
- Symbolic representation of the transition relation
- Symbolic encodings of arbitrary sets
- Set operations on symbolically encoded sets

Learning Outcomes

After this lecture...

1. students can explain the simplified version of $\operatorname{DPLL}(T)$, especially the interaction of SAT solver and theory solver.
2. students can apply the simplified version of DPPL(T) to decide the satisfiability of formulas in $\mathcal{T}_{U F E}$.

- Recap - Definition of a Theory

Definition of a First-Order Theory \mathcal{T} :

- Signature Σ
- Defines the set of constants, predicate and function symbols
- Set of Axioms \mathcal{A}
- Gives meaning to the predicate and function symbols

Recap - Definition of a Theory

Definition of a First-Order Theory \mathcal{T} :

- Signature Σ
- Defines the set of constants, predicate and function symbols
- Set of Axioms \mathcal{A}
- Gives meaning to the predicate and function symbols

Example: Theory of Lineare Integer Arithmetic $\mathcal{T}_{\text {LIA }}$:

- $\Sigma_{\mathrm{LIA}}:=\mathbb{Z} \cup\{+,-\} \cup\{=, \neq<, \leq,>, \geq\}$
- $\mathcal{A}_{\text {LIA }}$: defines the usual meaning to all symbols
- E.g., The function + is interpreted as the addition function, e.g.
-
- $0+0 \rightarrow 0$
- $0+1 \rightarrow 1$....

Recap: \mathcal{T}-Satisfiability, \mathcal{T}-validity, \mathcal{T}-Equivalence

- Only models satisfying axioms are relevant
- \rightarrow "Satisfiability modulo (='with respect to') theories"

All possible Models

Models satisfying all axioms

Recap - Implementations of SMT Solvers

- Eager Encoding
- Lazy Encoding

Recap - Implementations of SMT Solvers

- Eager Encoding
- Equisatisfiable propositional formula
- Adds all constraints that could be needed at once
- SAT Solver
- Lazy Encoding

> Equisatisfiable Propositional Formula
> $\mathcal{A} \wedge \boldsymbol{\phi}$

Recap - Implementations of SMT Solvers

- Eager Encoding

- Equisatisfiable propositional formula
- Adds all constraints that could be needed at once
- SAT Solver
- Lazy Encoding
- SAT Solver and Theory Solver
- Add constrains only when needed

UNSAT

Recap - Lazy Encoding

Recap - Theory Solver for $\mathcal{J}_{\text {UFE }}$

Congruence Closure Algorithm

- Takes conjunctions of theory literals as input
- Equalities (e.g., $f(g(a))=g(b))$
- Disequalities (e.g., a $\neq f(b)$)
- Checks whether assignment to literals is consistent with theory
- e.g., $a=b, b=c, c \neq a$ is $\mathcal{T}_{\text {UFE }}$ unsat

Plan for Today

- We did not do an example for lazy encoding yet
- \rightarrow Plan for today: Examples ()

Plan for Today

- We did not do an example for lazy encoding yet
- \rightarrow Plan for today: Examples ©
- Deciding Satisfiability of Formulas in $\mathcal{T}_{\text {UFE }}$ using (a simplified version of) DPLL(T)
- Execute DPLL with theory literals
- Use Congrence Closure to check assignment of theory literals

Example

Use the simple version of DPLL(T) to find satisfying assignment for φ within $\boldsymbol{\mathcal { T }}_{\boldsymbol{U F E}}$ (if one exists).

$$
\begin{aligned}
\varphi= & ((f(g(a))=b) \vee(f(b)=a)) \wedge((f(g(a)) \neq b) \vee(f(b)=c)) \wedge \\
& ((f(g(a))=b) \vee(f(a) \neq b)) \wedge((f(b) \neq a) \vee(f(b)=c)) \wedge \\
& ((f(b)=c) \vee(f(a)=b)) \wedge((f(b) \neq c) \vee(f(c) \neq a)) \wedge((f(a) \neq b) \vee(f(c) \neq a))
\end{aligned}
$$

Example

$$
\begin{aligned}
\varphi= & ((f(g(a))=b) \vee(f(b)=a)) \wedge((f(g(a)) \neq b) \vee(f(b)=c)) \wedge \\
& ((f(g(a))=b) \vee(f(a) \neq b)) \wedge((f(b) \neq a) \vee(f(b)=c)) \wedge \\
& ((f(b)=c) \vee(f(a)=b)) \wedge((f(b) \neq c) \vee(f(c) \neq a)) \wedge((f(a) \neq b) \vee(f(c) \neq a))
\end{aligned}
$$

Example

$$
\begin{aligned}
\varphi= & ((f(g(a))=b) \vee(f(b)=a)) \wedge((f(g(a)) \neq b) \vee(f(b)=c)) \wedge \\
& ((f(g(a))=b) \vee(f(a) \neq b)) \wedge((f(b) \neq a) \vee(f(b)=c)) \wedge \\
& ((f(b)=c) \vee(f(a)=b)) \wedge((f(b) \neq c) \vee(f(c) \neq a)) \wedge((f(a) \neq b) \vee(f(c) \neq a))
\end{aligned}
$$

- Step 1: Assign propositional variables to theory literals

$$
\begin{array}{ll}
e_{0} \Leftrightarrow(f(g(a))=b) & e_{3} \Leftrightarrow(f(a)=b) \\
e_{1} \Leftrightarrow(f(b)=a) & e_{4} \Leftrightarrow(f(c)=a) \\
e_{2} \Leftrightarrow(f(b)=c) &
\end{array}
$$

Example

$$
\begin{aligned}
\varphi= & ((f(g(a))=b) \vee(f(b)=a)) \wedge((f(g(a)) \neq b) \vee(f(b)=c)) \wedge \\
& ((f(g(a))=b) \vee(f(a) \neq b)) \wedge((f(b) \neq a) \vee(f(b)=c)) \wedge \\
& ((f(b)=c) \vee(f(a)=b)) \wedge((f(b) \neq c) \vee(f(c) \neq a)) \wedge((f(a) \neq b) \vee(f(c) \neq a))
\end{aligned}
$$

- Step 1: Assign propositional variables to theory literals

$$
\begin{array}{ll}
e_{0} \Leftrightarrow(f(g(a))=b) & e_{3} \Leftrightarrow(f(a)=b) \\
e_{1} \Leftrightarrow(f(b)=a) & e_{4} \Leftrightarrow(f(c)=a) \\
e_{2} \Leftrightarrow(f(b)=c) &
\end{array}
$$

- Step 2: Compute propositional skeleton $\hat{\varphi}$

Example

$$
\begin{aligned}
\varphi= & ((f(g(a))=b) \vee(f(b)=a)) \wedge((f(g(a)) \neq b) \vee(f(b)=c)) \wedge \\
& ((f(g(a))=b) \vee(f(a) \neq b)) \wedge((f(b) \neq a) \vee(f(b)=c)) \wedge \\
& ((f(b)=c) \vee(f(a)=b)) \wedge((f(b) \neq c) \vee(f(c) \neq a)) \wedge((f(a) \neq b) \vee(f(c) \neq a))
\end{aligned}
$$

- Step 1: Assign propositional variables to theory literals

$$
\begin{array}{ll}
e_{0} \Leftrightarrow(f(g(a))=b) & e_{3} \Leftrightarrow(f(a)=b) \\
e_{1} \Leftrightarrow(f(b)=a) & e_{4} \Leftrightarrow(f(c)=a) \\
e_{2} \Leftrightarrow(f(b)=c) &
\end{array}
$$

- Step 2: Compute propositional skeleton $\hat{\varphi}$
$\hat{\varphi}=\left(e_{0} \vee e_{1}\right) \wedge\left(\neg e_{0} \vee e_{2}\right) \wedge\left(e_{0} \vee \neg e_{3}\right) \wedge\left(\neg e_{1} \vee e_{2}\right) \wedge\left(e_{2} \vee e_{3}\right) \wedge\left(\neg e_{2} \vee e_{4}\right) \wedge\left(\neg e_{3} \vee \neg e_{4}\right)$

$$
\begin{gathered}
\hat{\varphi}=\left(e_{0} \vee e_{1}\right) \wedge\left(\neg e_{0} \vee e_{2}\right) \wedge\left(e_{0} \vee \neg e_{3}\right) \wedge\left(\neg e_{1} \vee e_{2}\right) \wedge \\
\left(e_{2} \vee e_{3}\right) \wedge\left(\neg e_{2} \vee e_{4}\right) \wedge\left(\neg e_{3} \vee \neg e_{4}\right)
\end{gathered}
$$

- Step 3: Use SAT Solver to find satisfying Model for $\hat{\varphi}$ (if one exists)
$\varphi=\left(e_{0} \vee e_{1}\right) \wedge\left(\neg e_{0} \vee e_{2}\right) \wedge\left(e_{0} \vee \neg e_{3}\right) \wedge\left(\neg e_{1} \vee e_{2}\right) \wedge\left(e_{2} \vee e_{3}\right) \wedge\left(\neg e_{2} \vee e_{4}\right) \wedge\left(\neg e_{3} \vee \neg e_{4}\right)$ Decision heuristic: alphabetical order starting with the negative phase

Step	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	
Dec. Level							
Assignment							
1: $\left\{e_{0}, e_{1}\right\}$							
2: $\left\{\neg e_{0}, e_{2}\right\}$							
3: $\left\{e_{0}, \neg e_{3}\right\}$							
$4:\left\{\neg e_{1}, e_{2}\right\}$							
5: $\left\{e_{2}, e_{3}\right\}$							
6: $\left\{\neg e_{2}, e_{4}\right\}$							
7: $\left\{\neg e_{3}, \neg e_{4}\right\}$							
LC 1							
LC 2							
BCP							
Pure Literal							
Decision							

$\varphi=\left(e_{0} \vee e_{1}\right) \wedge\left(\neg e_{0} \vee e_{2}\right) \wedge\left(e_{0} \vee \neg e_{3}\right) \wedge\left(\neg e_{1} \vee e_{2}\right) \wedge\left(e_{2} \vee e_{3}\right) \wedge\left(\neg e_{2} \vee e_{4}\right) \wedge\left(\neg e_{3} \vee \neg e_{4}\right)$ Decision heuristic: alphabetical order starting with the negative phase

Step	1	2	3	4	5	6
Decision Level	0	1	1	1	1	1
Assignment	-	$\neg e_{0}$	$\neg e_{0}, e_{1}$	$\neg e_{0}, e_{1}, e_{2}$	$\neg e_{0}, e_{1}, e_{2}$, $\neg e_{3}$	$\neg e_{0}, e_{1}, e_{2}$, $\neg e_{3}, e_{4}$
Cl. 1: e_{0}, e_{1}	e_{0}, e_{1}	e_{1}	\checkmark	\checkmark	\checkmark	\checkmark
Cl. 2: $\neg e_{0}, e_{2}$	$\neg e_{0}, e_{2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Cl. 3: $e_{0}, \neg e_{3}$	$e_{0}, \neg e_{3}$	$\neg e_{3}$	$\neg e_{3}$	$\neg e_{3}$	\checkmark	\checkmark
Cl. $4: \neg e_{1}, e_{2}$	$\neg e_{1}, e_{2}$	$\neg e_{1}, e_{2}$	e_{2}	\checkmark	\checkmark	\checkmark
Cl. $5: e_{2}, e_{3}$	e_{2}, e_{3}	e_{2}, e_{3}	e_{2}, e_{3}	\checkmark	\checkmark	\checkmark
Cl. 6: $\neg e_{2}, e_{4}$	$\neg e_{2}, e_{4}$	$\neg e_{2}, e_{4}$	$\neg e_{2}, e_{4}$	e_{4}	e_{4}	\checkmark
Cl. 7: $\neg e_{3}, \neg e_{4}$	\checkmark	\checkmark				
BCP	-	e_{1}	e_{2}	$\neg e_{3}$	e_{4}	-
PL	-	-	-	-	-	-
Decision	$\neg e_{0}$	-	-	-	-	SAT

Example

- Returned satisfying assignment from SAT Solver
- $M_{\text {prop }}=\left\{e_{0}=F, e_{1}=T, e_{2}=T, e_{3}=F, e_{4}=T\right\}$

- $M_{\text {prop }} \vDash \hat{\varphi}$

Example

- Returned satisfying assignment from SAT Solver

- $M_{\text {prop }}=\left\{e_{0}=F, e_{1}=T, e_{2}=T, e_{3}=F, e_{4}=T\right\}$
- $M_{\text {prop }} \vDash \hat{\varphi}$
- Step 4: Check if assignment of theory literals is consistent with theory
- Translate back to theory literals using

$$
\begin{array}{ll}
e_{0} \Leftrightarrow(f(g(a))=b) & e_{3} \Leftrightarrow(f(a)=b) \\
e_{1} \Leftrightarrow(f(b)=a) & e_{4} \Leftrightarrow(f(c)=a) \\
e_{2} \Leftrightarrow(f(b)=c) &
\end{array}
$$

Example

- Returned satisfying assignment from SAT Solver
- $M_{\text {prop }}=\left\{e_{0}=F, e_{1}=T, e_{2}=T, e_{3}=F, e_{4}=T\right\}$
- $M_{\text {prop }} \vDash \hat{\varphi}$
- Step 4: Check if assignment of theory literals is consistent with theory
- Translate back to theory literals using

$$
\begin{array}{ll}
e_{0} \Leftrightarrow(f(g(a))=b) & \\
e_{3} \Leftrightarrow(f(a)=b) \\
e_{1} \Leftrightarrow(f(b)=a) & e_{4} \Leftrightarrow(f(c)=a) \\
e_{2} \Leftrightarrow(f(b)=c) &
\end{array}
$$

- $M_{\mathcal{T}_{\text {UFF }}}:=\{(f(g(a)) \neq b),(f(b)=a),(f(b)=c),(f(a) \neq b),(f(c)=a)\}$
- $M_{\mathcal{T}_{U F E}}:=\{(f(g(a)) \neq b),(f(b)=a),(f(b)=c),(f(a) \neq b),(f(c)=a)\}$

Example

- Execute Congruence Closure Algorithm
- $M_{\mathcal{T}_{U F E}}:=\{(f(g(a)) \neq b),(f(b)=a),(f(b)=c),(f(a) \neq b),(f(c)=a)\}$
$\{f(b), a\},\{f(b), c\},\{f(c), a\},\{f(g(a))\},\{b\},\{f(a)\}$ $\{a, c, f(b)\},\{f(c), a\},\{f(g(a))\},\{b\},\{f(a)\}$
$\{a, c, f(b), f(c)\},\{f(g(a))\},\{b\},\{f(a)\}$ $\{a, c, f(a) f(b), f(c)\},\{f(g(a))\},\{b\}$

Example

- Execute Congruence Closure Algorithm
- $M_{\mathcal{T}_{U F E}}:=\{(f(g(a)) \neq b),(f(b)=a),(f(b)=c),(f(a) \neq b),(f(c)=a)\}$

$$
\begin{array}{r}
\{f(b), a\},\{f(b), c\},\{f(c), a\},\{f(g(a))\},\{b\},\{f(a)\} \\
\{a, c, f(b)\}, \quad\{f(c), a\},\{f(g(a))\},\{b\},\{f(a)\} \\
\{a, c, f(b), f(c)\},\{f(g(a))\},\{b\},\{f(a)\} \\
\{a, c, f(a) f(b), f(c)\},\{f(g(a))\},\{b\}
\end{array}
$$

- $\mathcal{T}_{\text {UFE }}$-Satisfiable since $f(g(a))$ and b as well as $f(a)$ and b are in different equivalence classes.
- $M_{\mathcal{J}_{\text {UFE }}}:=\{(f(g(a)) \neq b),(f(b)=a),(f(b)=c),(f(a) \neq b),(f(c)=a)\}$

$$
\begin{array}{r}
\{f(b), a\},\{f(b), c\},\{f(c), a\},\{f(g(a))\},\{b\},\{f(a)\} \\
\{a, c, f(b)\},\{f(c), a\},\{f(g(a))\},\{b\},\{f(a)\} \\
\{a, c, f(b), f(c)\},\{f(g(a))\},\{b\},\{f(a)\} \\
\{a, c, f(a) f(b), f(c)\},\{f(g(a))\},\{b\}
\end{array}
$$

- $\mathcal{T}_{\text {UFE }}$-Satisfiable since $f(g(a))$ and b as well as $f(a)$ and b are in different equivalence classes.
- $\rightarrow M_{\mathcal{T}_{\text {UFE }}}$ is a satisfying assignment for φ. Algorithm terminates with SAT.

Plan for Today

- Part 1 - Lazy Encoding / DPLL(T)
- Recap: Theories in Predicate Logic
- Recap: Lazy Encoding and Congruence Closure
- Simplified Version of DPLL(T)
- Discuss via example
- Part 2 - Symbolic Encoding
- Motivation
- Transition systems
- Symbolic representation of sets of states
- Symbolic representation of the transition relation
- Symbolic encodings of arbitrary sets
- Set operations on symbolically encoded sets

Motivation - Symbolic Encoding

- We want to reason about systems
- \rightarrow We want automatic verification of software and hardware
- Problem: Systems have huge state spaces / number of transitions

Motivation - Symbolic Encoding

- We want to reason about systems
- \rightarrow We want automatic verification of software and hardware
- Problem: Systems have huge state spaces / number of transitions
- Automatic Verification History
- 1981: EMC Model checker $\sim 10^{4}$ states

Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications
E. M. CLARKE

Carnegie Mellon University
E. A. EMERSON

University of Texas, Austin
and
A. P. SISTLA

GTE Laboratories, Inc.

Motivation - Symbolic Encoding

- We want to reason about systems
- \rightarrow We want automatic verification of software and hardware
- Problem: Systems have huge state spaces
- Automatic Verification History
- 1981: EMC Model checker $\sim 10^{4}$ states
- 1992: Symbolic Model Checking using BDDs

Symbolic Model Checking: 10^{20} States and Beyond*
J. R. Burch, E. M. Clarke, and K. L. McMillan

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

AND
D. L. Dill and L. J. Hwang

Motivation- Symbolic Encoding

- Explicit Algorithms
- Algorithms work explicitly with sets (of states and transitions)
- Symbolic Algorithms
- Represent sets as formulas
- Perform operations on formulas

Motivation- Symbolic Encoding

- Explicit Algorithms
- Algorithms work explicitly with sets (of states and transitions)
- Symbolic Algorithms
- Represent sets as formulas
- Perform operations on formulas

Symbolic encoding = representation of sets as formulas
Symbolic set operations = logical operations on formulas representing sets

Motivation- Symbolic Encoding

- Explicit Algorithms
- Algorithms work explicitly with sets (of states and transitions)
- Symbolic Algorithms
- Represent sets as formulas
- Perform operations on formulas
- Advantage:
- Often possible to represent huge sets with relatively small formulas.

Motivation- Symbolic Encoding

- Explicit Algorithms
- Algorithms work explicitly with sets (of states and transitions)
- Symbolic Algorithms
- Represent sets as formulas
- Perform operations on formulas
- Additional Trick:

Represent formulas via BDDs

- Efficient representation \& manipulation

Symbolic Model Checking: 10^{20} States and Beyond* J. R. Burch, E. M. Clarke, and K. L. McMillan

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

AND
D. L. Dill and L. J. Hwang

Learning Outcomes

After this lecture...

1. students can symbolically encode sets (in particular, sets of states and sets of transitions as well as arbitrary sets).

Learning Outcomes

After this lecture...

1. students can symbolically encode sets (in particular, sets of states and sets of transitions as well as arbitrary sets).
2. students can perform set operations on symbolically encoded sets.

Plan for Today

- Part 1 - Lazy Encoding / DPLL(T)
- Recap: Theories in Predicate Logic
- Recap: Lazy Encoding and Congruence Closure
- Simplified Version of DPLL(T)
- Discuss via example
- Part 2 - Symbolic Encoding
- Motivation
- Transition systems
- Symbolic representation of sets of states
- Symbolic representation of the transition relation
- Symbolic encodings of arbitrary sets
- Set operations on symbolically encoded sets

Transition Systems

- Model of a digital system
- T is a triple $\left(S, S_{0}, R\right)$
- Finite Set of States S
- Set of Initial States $\mathrm{S}_{0} \subseteq S$
- Transition Relation $\mathrm{R} \subseteq S \times S$

Transition Systems

- Model of a digital system
- T is a triple $\left(S, S_{0}, R\right)$
- Finite Set of States S
- Set of Initial States $\mathrm{S}_{0} \subseteq S$
- Transition Relation $\mathrm{R} \subseteq S \times S$
- Often visualized as directed Graph

$$
S=\left\{s_{1}, s_{2}, s_{3}\right\}, \quad S_{0}=\left\{s_{1}\right\}, \quad R=\left\{\left(s_{1}, s_{2}\right),\left(s_{2}, s_{1}\right),\left(s_{3}, s_{2}\right)\right\}
$$

Transition Systems - Example

Draw the graph for a transition system \mathcal{T} with: $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$, $S_{0}=\left\{s_{2}\right\}$,
$R=\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{1}, s_{1}\right\},\left\{s_{2}, s_{4}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{3}, s_{1}\right\},\left\{s_{4}, s_{2}\right\},\left\{s_{4}, s_{3}\right\}\right\}$,

Transition Systems - Example
Draw the graph for a transition system \mathcal{T} with: $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$,

$$
\begin{aligned}
& S_{0}=\left\{s_{2}\right\} \\
& R=\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{1}, s_{1}\right\},\left\{s_{2}, s_{4}\right\},\left\{s_{2}, s_{3}\right\},\left\{s_{3}, s_{1}\right\},\left\{s_{4}, s_{2}\right\},\left\{s_{4}, s_{3}\right\}\right\}
\end{aligned}
$$

Transition Systems - Example

- Model a traffic light controller
- Initially the red light is on. After some time, the controller switches such that the red and the yellow light are on. After some time, the controller switches to green, from green to yellow, and from yellow back to red, and so on.
- Draw the transition systems

Transition Systems - Example

- Model a traffic light controller
- Initially the red light is on. After some time, the controller switches such that the red and the yellow light are on. After some time, the controller switches to green, from green to yellow, and from yellow back to red, and so on.
- Draw the transition systems
- States used:
- S_{r}... the red light is on.
- $s_{y} \ldots$ the yellow light is on.
- $s_{g} \ldots$ the green light is on.
- $s_{r y}$... the red and yellow lights are on

Transition Systems - Example

- Model a traffic light controller
- Initially the red light is on. After some time, the controller switches such that the red and the yellow light are on. After some time, the controller switches to green, from green to yellow, and from yellow back to red, and so on.
- Draw the transition systems
- States used:
- S_{r}... the red light is on.
- $s_{y} \ldots$ the yellow light is on.
- $s_{g} \ldots$ the green light is on.
- $s_{r y}$... the red and yellow lights are on

Plan for Today

- Part 1 - Lazy Encoding / DPLL(T)
- Recap: Theories in Predicate Logic
- Recap: Lazy Encoding and Congruence Closure
- Simplified Version of DPLL(T)
- Discuss via example
- Part 2 - Symbolic Encoding
- Motivation
- Transition systems
- Symbolic representation of sets of states
- Symbolic representation of the transition relation
- Symbolic encodings of arbitrary sets
- Set operations on symbolically encoded sets

Symbolic Encoding

- Systems have huge state spaces / number of transitions
- Therefore,
- Symbolically encode sets (of states and transitions)
- Perform set operations symbolically

Symbolic Encoding

- Systems have huge state spaces / number of transitions
- Therefore,
- Symbolically encode sets (of states and transitions)
- Perform set operations symbolically
- Notation
- Use upper-case letters for sets
- Use the corresponding lower-case letter for the formula that symbolically represents the set
- E.g., The set F is represented via the formula f

Symbolic Representation of Sets of States

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{\mathrm{n}}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{n}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.
- Example: Encode the state space $S=\left\{s_{0}, s_{1}\right\}$
- Use 1 Boolean variable v_{0}

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{n}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.
- Example: Encode the state space $S=\left\{s_{0}, s_{1}\right\}$
- Use 1 Boolean variable v_{0}
- The formula $\neg \boldsymbol{v}_{\mathbf{0}}$ symbolically represents the state $\boldsymbol{s}_{\mathbf{0}}$
- The formula $\boldsymbol{v}_{\mathbf{0}}$ symbolically represents the state $\boldsymbol{s}_{\mathbf{1}}$

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{\mathrm{n}}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.
- Example: Encode the state space $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{\mathrm{n}}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.
- Example: Encode the state space $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$
- Use 2 Boolean variable v_{0} and v_{1}

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{\mathrm{n}}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.
- Example: Encode the state space $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$
- Use 2 Boolean variable v_{0} and v_{1}
- The formula symbolically represents the state s_{0}
- The formula ... symbolically represents the state s_{1}
- The formula ... symbolically represents the state s_{2}
- The formula ... symbolically represents the state s_{3}

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{\mathrm{n}}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.
- Example: Encode the state space $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$
- Use 2 Boolean variable v_{0} and v_{1}
- The formula $\neg v_{1} \wedge \neg v_{0}$ symbolically represents the state s_{0}
- The formula ... symbolically represents the state s_{1}
- The formula ... symbolically represents the state s_{2}
- The formula ... symbolically represents the state s_{3}

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{\mathrm{n}}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.
- Example: Encode the state space $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$
- Use 2 Boolean variable v_{0} and v_{1}
- The formula $\neg v_{1} \wedge \neg v_{0}$ symbolically represents the state s_{0}
- The formula $v_{1} \wedge \neg v_{0}$ symbolically represents the state s_{1}
- The formula ... symbolically represents the state s_{2}
- The formula ... symbolically represents the state s_{3}

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{n}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.
- Example: Encode the state space $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$
- Use 2 Boolean variable v_{0} and v_{1}
- The formula $\neg v_{1} \wedge \neg v_{0}$ symbolically represents the state s_{0}
- The formula $v_{1} \wedge \neg v_{0}$ symbolically represents the state s_{1}
- The formula $\neg v_{1} \wedge v_{0}$ symbolically represents the state s_{2}
- The formula ... symbolically represents the state s_{3}

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{n}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.
- Example: Encode the state space $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$
- Use 2 Boolean variable v_{0} and v_{1}
- The formula $\neg v_{1} \wedge \neg v_{0}$ symbolically represents the state s_{0}
- The formula $v_{1} \wedge \neg v_{0}$ symbolically represents the state s_{1}
- The formula $\neg v_{1} \wedge v_{0}$ symbolically represents the state s_{2}
- The formula $v_{1} \wedge v_{0} \quad$ symbolically represents the state s_{3}

Symbolic Representation of Sets of States

- Symbolic Representation of States via Binary Encoding
- Given $|S| \leq 2^{n}$ states, we need n Boolean variables $\left\{v_{0}, \ldots, v_{n-1}\right\}$ to symbolically represent the state space.
- Example: Encode the state space $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{7}\right\}$
- Use 3 Boolean variable v_{0}, v_{1} and v_{2}
- The formula $\neg v_{2} \wedge \neg v_{1} \wedge \neg v_{0}$ symbolically s_{0}
...
- The formula $v_{2} \wedge v_{1} \wedge v_{0}$ symbolically s_{7}

Symbolic Representation of Sets of States

- Entire State Space: Use variables $V=\left\{v_{0}, \ldots, v_{n-1}\right\}$ for binary representations of 2^{n} states

Symbolic Representation of Sets of States

- Single State
- Apply binary encoding
- E.g. State s_{2} is encoded as $\neg v_{2} \wedge v_{1} \wedge \neg v_{0}$

Symbolic Representation of Sets of States

- Sets of States
- Example: Symbolically encode the set of states $\left\{s_{5}, s_{1}\right\}$
- Solution: ?

Symbolic Representation of Sets of States

- Sets of States
- Example: Symbolically encode the set of states $\left\{s_{5}, s_{1}\right\}$
- Solution:

$$
\left(v_{2} \wedge \neg v_{1} \wedge v_{0}\right) \vee\left(\neg v_{2} \wedge \neg v_{1} \wedge v_{0}\right)=\neg v_{1} \wedge v_{0}
$$

Symbolic Representation of Sets of States

- Sets of States
- Example: Symbolically encode all even numbered states
- Solution: ?

Symbolic Representation of Sets of States

- Sets of States
- Example: Symbolically encode all even numbered states
- Solution: $\neg v_{0}$
- We encoded a relatively large set via a small formula. ©

Plan for Today

- Part 1 - Lazy Encoding / DPLL(T)
- Recap: Theories in Predicate Logic
- Recap: Lazy Encoding and Congruence Closure
- Simplified Version of DPLL(T)
- Discuss via example
- Part 2 - Symbolic Encoding
- Motivation
- Transition systems
- Symbolic representation of sets of states
- Symbolic representation of the transition relation
- Symbolic encodings of arbitrary sets
- Set operations on symbolically encoded sets
${ }^{74}$ Symbolic Representation of a Single Transition

Symbolic Representation of a Single Transition

- Create a second set of variables V^{\prime} (Duplicate variables)

Symbolic Representation of a Single Transition

- Create a second set of variables V^{\prime} (Duplicate variables)
- variables in $v_{0}, v_{1}, v_{2}, \ldots \in V$ represent present state variables
- variables in $v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots \in V^{\prime}$ represent next state variables

Symbolic Representation of a Single Transition

- Create a second set of variables V^{\prime} (Duplicate variables)
- variables in $v_{0}, v_{1}, v_{2}, \ldots \in V$ represent present state variables
- variables in $v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots \in V^{\prime}$ represent next state variables

Symbolic Representation of a Single Transition

- Create a second set of variables V^{\prime} (Duplicate variables)
- variables in $v_{0}, v_{1}, v_{2}, \ldots \in V$ represent present state variables
- variables in $v_{0}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots \in V^{\prime}$ represent next state variables

$$
\neg v_{2} \wedge \neg v_{1} \wedge \neg v_{0} \quad \wedge \quad \neg v_{2}^{\prime} \wedge \neg v_{1}^{\prime} \wedge v_{0}^{\prime}
$$

Symbolic Representation of Sets of Transitions

- Given Set of symbolically encoded edges $\mathrm{E}=\left\{e_{1}, e_{2}, e_{3}\right\}$

Symbolic Representation of Sets of Transitions

- Given Set of symbolically encoded edges $\mathrm{E}=\left\{e_{1}, e_{2}, e_{3}\right\}$
- Symbolic representation via Disjunction
- $e=e_{1} \vee e_{2} \vee e_{3}$
- Good for sparse sets of edges

Symbolic Representation of Sets of Transitions

- Given Set of symbolically encoded edges $\mathrm{E}=\left\{e_{1}, e_{2}, e_{3}\right\}$
- Symbolic representation via Disjunction
- $e=e_{1} \vee e_{2} \vee e_{3}$
- Good for sparse sets of edges
- Alternative
- Exclude missing edges
- 【T】
{missing edges } \} = Negation of union of all missing edges
- Good for dense sets of edges

Symbolic Representation of Sets of Transitions

- Given Set of symbolically encoded edges $\mathrm{E}=\left\{e_{1}, e_{2}, e_{3}\right\}$
- Symbolic representation via Disjunction
- $e=e_{1} \vee e_{2} \vee e_{3}$
- Good for sparse sets of edges
- Alternative
- Exclude missing edges
- 【T】
{missing edges } \} = Negation of union of all missing edges
- Good for dense sets of edges
- Recognize patterns
- E.g. even numbered states have edges to (all) odd numbered states
- $\neg x_{0} \wedge x_{0}^{\prime}$

Symbolic Representation of Sets of Transitions

- Example:
- Symbolically encode the transition relation

Symbolic Representation of Sets of Transitions

- Example:
- Symbolically encode the transition relation

Symbolic Representation of Sets of Transitions

- Example:
- Symbolically encode the transition relation

$$
\begin{aligned}
& \left(\neg v_{1} \wedge \neg v_{0} \wedge \neg v^{\prime}{ }_{1} \wedge v_{0}^{\prime}\right) \vee \\
& \left(\neg v_{1} \wedge v_{0} \wedge v_{1}^{\prime} \wedge \neg v_{0}^{\prime}\right) \vee \\
& \left(v_{1} \wedge \neg v_{0} \wedge v^{\prime}{ }_{1} \wedge v_{0}^{\prime}\right) \vee \\
& \left(v_{1} \wedge v_{0} \wedge \neg \neg v^{\prime}{ }_{1} \wedge \neg v_{0}^{\prime}\right)
\end{aligned}
$$

Symbolic Representation of Sets of Transitions

- Example:
- Symbolically encode the transition relation

Symbolic Representation of Sets of Transitions

- Example:
- Symbolically encode the transition relation

$$
\neg\left(v_{1} \wedge \neg v_{0} \wedge v_{1}^{\prime} \wedge \neg v_{0}^{\prime}\right)
$$

Symbolic Representation of Sets of Transitions

- Example:
- Symbolically encode the transition relation

Symbolic Representation of Sets of Transitions

- Example:
- Symbolically encode the transition relation

$$
\begin{array}{ll}
\neg\left(\left(v_{1} \wedge \neg v_{0} \wedge v_{1}^{\prime} \wedge \neg v_{0}^{\prime}\right) \vee\right. & s_{2} \rightarrow s_{2} \\
\left(v_{1} \wedge \neg v_{0} \wedge \neg v_{1}^{\prime} \wedge v_{0}^{\prime}\right) \vee & s_{2} \rightarrow s_{1} \\
\left.\left(\neg v_{1} \wedge v_{0} \wedge v_{1}^{\prime} \wedge \neg v_{0}^{\prime}\right)\right) & \\
s_{1} \rightarrow s_{2}
\end{array}
$$

Plan for Today

- Part 1 - Lazy Encoding / DPLL(T)
- Recap: Theories in Predicate Logic
- Recap: Lazy Encoding and Congruence Closure
- Simplified Version of DPLL(T)
- Discuss via example
- Part 2 - Symbolic Encoding
- Motivation
- Transition systems
- Symbolic representation of sets of states
- Symbolic representation of the transition relation
- Symbolic encodings of arbitrary sets
- Set operations on symbolically encoded sets

Symbolic Encoding of arbitrary Sets

- Domain: e.g. $\mathrm{D}=\{$ Austria, Germany, Spain,Italy $\}$
- \#Vars $=\lceil l d(|\mathrm{D}|)\rceil$

Symbolic Encoding of arbitrary Sets

- Domain: e.g. $\mathrm{D}=\{$ Austria, Germany, Spain, Italy $\}$
- \#Vars $=\lceil l d(|\mathrm{D}|)\rceil$

Element	Encoding	
	x_{1}	x_{0}
Austria		
Germany		
Spain		
Italy		

Symbolic Encoding of arbitrary Sets

- Domain: e.g. $\mathrm{D}=\{$ Austria, Germany, Spain, Italy $\}$
- \#Vars $=\lceil l d(|\mathrm{D}|)\rceil$

Element	Encoding	
	$x_{\mathbf{1}}$	x_{0}
Austria	0	0
Germany	0	1
Spain	1	0
Italy	1	1

Symbolic Encoding of arbitrary Sets

- $F=\{$ Austria $\}$

Element	Encoding	
	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{0}}$
Austria	0	0
Germany	0	1
Spain	1	0
Italy	1	1

Symbolic Encoding of arbitrary Sets

- $F=\{$ Austria $\}$
- $f=\neg x_{0} \wedge \neg x_{1}$

Element	Encoding	
	$x_{\mathbf{1}}$	$x_{\mathbf{0}}$
Austria	0	0
Germany	0	1
Spain	1	0
Italy	1	1

Symbolic Encoding of arbitrary Sets

- $F=\{$ Austria $\}$
- $f=\neg x_{0} \wedge \neg x_{1}$
- $G=\{$ Austria, Spain $\}$

Element	Encoding	
	$x_{\mathbf{1}}$	$x_{\mathbf{0}}$
Austria	0	0
Germany	0	1
Spain	1	0
Italy	1	1

Symbolic Encoding of arbitrary Sets

- $F=\{$ Austria $\}$
- $f=\neg x_{0} \wedge \neg x_{1}$
- $G=\{$ Austria, Spain $\}$
- $g=\neg x_{0}$

Element	Encoding	
	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{0}}$
Austria	0	0
Germany	0	1
Spain	1	0
Italy	1	1

Symbolic Encoding of arbitrary Sets

Element	Encoding	
	x_{1}	x_{0}
Austria	0	0
Germany	1	0
Spain	1	1
Italy	0	1

Element	Encoding	
	x_{1}	x_{0}
Austria	0	0
Germany	1	0
Spain	0	1
Italy	1	1

- Which encoding gives the shorter formula for the set $B=\{$ Germany, Spain\}?

Symbolic Encoding of arbitrary Sets

Element	Encoding	
	x_{1}	x_{0}
Austria	0	0
Germany	1	0
Spain	1	1
Italy	0	1

Element	Encoding	
	x_{1}	x_{0}
Austria	0	0
Germany	1	0
Spain	0	1
Italy	1	1

- Which encoding gives the shorter formula for the set $B=\{$ Germany, Spain\}?
- Answer: The first encoding:

$$
f_{\text {encoding } 1}=x_{1} \quad f_{\text {encoding } 2}=x_{1} \oplus x_{0}
$$

Encoding Natural Numbers

- Binary Representation
- Domain D: Usually Power of 2
- E.g.: $D=\left\{x \in \mathbb{N} \mid x<2^{12}\right\}$

$$
(457)_{10}=(000111001001)_{2}
$$

Plan for Today

- Part 1 - Lazy Encoding / DPLL(T)
- Recap: Theories in Predicate Logic
- Recap: Lazy Encoding and Congruence Closure
- Simplified Version of DPLL(T)
- Discuss via example
- Part 2 - Symbolic Encoding
- Motivation
- Transition systems
- Symbolic representation of sets of states
- Symbolic representation of the transition relation
- Symbolic encodings of arbitrary sets
- Set operations on symbolically encoded sets

Symbolic Operations

- Intersection: $F \cap G \Leftrightarrow f \wedge g$
- Union: $F \cup G \Leftrightarrow$?
- Difference: $F \backslash G \Leftrightarrow$?
- Equality: $F=G \Leftrightarrow$?
- Subset: $F \subseteq G \Leftrightarrow$?

Symbolic Operations

- Intersection: $F \cap G \Leftrightarrow f \wedge g$
- Union: $F \cup G \Leftrightarrow f \vee g$
- Difference: $F \backslash G \Leftrightarrow$?
- Equality: $F=G \Leftrightarrow$?
- Subset: $F \subseteq G \Leftrightarrow$?

${ }^{10}$ Symbolic Operations

- Intersection: $F \cap G \Leftrightarrow f \wedge g$
- Union: $F \cup G \Leftrightarrow f \vee g$
- Difference: $F \backslash G \Leftrightarrow f \wedge \neg g$
- Equality: $F=G \Leftrightarrow$?
- Subset: $F \subseteq G \Leftrightarrow$?

${ }^{10}$ Symbolic Operations

- Intersection: $F \cap G \Leftrightarrow f \wedge g$
- Union: $F \cup G \Leftrightarrow f \vee g$
- Difference: $F \backslash G \Leftrightarrow f \wedge \neg g$
- Equality: $F=G \Leftrightarrow f \leftrightarrow g$
- Subset: $F \subseteq G \Leftrightarrow$?

${ }^{10}$ Symbolic Operations

- Intersection: $F \cap G \Leftrightarrow f \wedge g$
- Union: $F \cup G \Leftrightarrow f \vee g$
- Difference: $F \backslash G \Leftrightarrow f \wedge \neg g$
- Equality: $F=G \Leftrightarrow f \leftrightarrow g$
- Subset: $F \subseteq G \Leftrightarrow f \rightarrow g$

Example

- Domain: $A=\{x \in \mathbb{N} \mid 0 \leq x \leq 1023\}$

10 bit binary representation $x_{9} x_{8} \ldots . x_{0}$

- $B=\{x \in A \mid x<512\}$
- $C=\{x \in A \mid 256 \leq x<768\}$
- $D=B \cup C$
- $E=B \cap C$
- $F=A \mid E$
- TODO: Compute the symbolic representations for B, C, D, E, and F

Example

- Domain: $A=\{x \in \mathbb{N} \mid 0 \leq x \leq 1023\}$

10 bit binary representation $x_{9} x_{8} \ldots x_{0}$

- $B=\{x \in A \mid x<512\}, b=\neg x_{9}$
- $C=\{x \in A \mid 256 \leq x<768\}, c=\left(\neg x_{9} \wedge x_{8}\right) \vee\left(x_{9} \wedge \neg x_{8}\right)$?
- $D=B \cup C$

- $F=A \mid E$

Example

- Domain: $A=\{x \in \mathbb{N} \mid 0 \leq x \leq 1023\}$

10 bit binary representation $x_{9} x_{8} \ldots . x_{0}$

- $B=\{x \in A \mid x<512\}, b=\neg x_{9}$
- $C=\{x \in A \mid 256 \leq x<768\}, c=\left(\neg x_{9} \wedge x_{8}\right) \vee\left(x_{9} \wedge \neg x_{8}\right)$?
- $D=B \cup C \quad d=\neg x_{9} \vee\left(\left(\neg x_{9} \wedge x_{8}\right) \vee\left(x_{9} \wedge \neg x_{8}\right)\right)=\neg x_{9} \vee\left(x_{9} \wedge \neg x_{8}\right)$
- $E=B \cap C \quad e=\neg x_{9} \wedge\left(\left(\neg x_{9} \wedge x_{8}\right) \vee\left(x_{9} \wedge \neg x_{8}\right)\right)=\neg x_{9} \wedge x_{8}$
- $F=A \mid E \quad f=T \wedge \neg\left(\neg x_{9} \wedge x_{8}\right)=x_{9} \vee \neg x_{8}$

Thank You

