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Model Checking of LTL
given an LTL property ¢ and a Kripke structure VI
check whether M = ¢
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Model Checking of LTL
given an LTL property ¢ and a Kripke structure |V
check whether M = ¢

Construct -

Construct a Buchi automaton §_,

Translate M to an automaton A.

Construct the automaton B with L(B) = L(A) N L(S-,)

If L(B) = @ => A satisfies ¢

Otherwise, a word v - w® € L(B) is a counterexample
a computation in M that does not satisfy ¢
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Plan for Today

= LTL-Model Checking via Automata-Theoretic Approach

= Basic facts of automata theory
= Represent system models and specifications via automata
= Model-checking algorithm
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Outline

Finite automata on finite words

Automata on infinite words (Blchi automata)
Deterministic vs non-deterministic Blchi automata
Intersection of Blichi automata

Checking emptiness of Buchi automata

Automata and Kripke Structures

Model checking using automata

Generalized Blchi automata

Translation of LTL to Blchi automata
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Finite Automata on Finite Words
Regular Automata

A =(Z,Q,4,Q°%F)

X is the finite alphabet

Q is the finite set of states

ACQ X X X Qisthe transition relation
QO is the set of initial states

F is the set of accepting states
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Finite Automata on Finite Words
Regular Automata

Example: A = (£,Q,A,Q°,F)
X = {a, b}

Q = {q1,9:}

A = {(91,a,91),(q1,b,492),(q2,a,q1),(q2, b, q2)},
O = {q1}

F = {q.}

a

20O

a

b

b

re rrect System:
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ﬂ Words and Runs on Finite Automata

= Aword vis astring (sequence) in £* of length |v|
= Arun pis a path in the graph of A.

= Givenaword v =ay,a,,..,a, and automaton A

= Arunp = q,4q,,--q,0f A over vis asequence of states s.t.
= qoc Q°
= forall0<i<n—1, (g;,a;419;+1) €A

/a\
H\/
a ’ b
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H Accepting Words and Runs

= Arunp = q,9q -9, 1S accepting  q, € F

= Aacceptsawordv =aya,, .., a, ©
If there Is a corresponding accepting run p (i.e., g, € F)

SAONY What words does A accept? ]
L(A) = {the empty word} U T
{all words that end with a}
={elu{a, b} a o
b
a b
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Languages on Finite Automata

Language of A
= L(A) € X, Is the set of words that A accepts.

Languages accepted by finite automata are regular
languages.
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Finite Automata on Finite Words
Reqgular Automata

Build an automaton that accepts all and only those
strings that contain 001.

0 0,1
N0 N\

—@4 o (Yoo =
,
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Deterministic & Non-Deterministic Automata

= A s deterministic if A is a function (one output for each input).
= Vg € Q,Va €X:|A(qg,a)| <1, and
" Q% =1

= Det. automata have exactly one run for each word.

= Non-det. automata
= Can have transitions (q,a,q'),(q,a,q"") € Aand q" # q'
= Can have e-transitions (transitions without a letter)
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Language of an NFA

= NFA (Nondeterministic Finite Automata) accepts all words
that have a run that ends in an accepting state

= What is the language of this automaton?

L(A) = {all words that end with a}
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NFA on finite words to DFA

" Any non-deterministic finite automata on finite words can be translated
Into an equivalent deterministic automaton.

Non-deterministic automaton A Equivalent Det. automaton A’

SR O o
a,b a b 0 < b R\ 0 a
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Equivalent Deterministic Automaton

= Algorithm: Subset-Construction (exponential blow-up)
= NFA: A = (£,Q,A,Q%F)
= DFA: A’ = (X, P(Q),A’,{Q%,F’) such that

P ... Powerset
Each state in A’ corresponds to a set of states that A
after reading some input sequence

Non-deterministic automaton A Equivalent Det. automaton A’

80 @AY e
a,b a b 04 - & a
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Equivalent Deterministic Automaton

= Algorithm: Subset-Construction (exponential blow-up)
= NFA: A = (Z,Q,A,Q°F)
= DFA: A = (%, P(Q),A’,{Q%,F’) such that
= A:P(Q) XX — P(Q)where (Q,a,Q,) € A'if

Q, = U {q'|(q,a,q") € A}

q€Q1
Example: ({sg,s1}, a,{sy, s1}) € A" since
* (sp,a,50) € Aand (sy,a,5,) €EA
* (s1,a,50) EA
Non-deterministic automaton A Equivalent Det. automaton A’

@y G
a,b a 5 04 - & a
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Equivalent Deterministic Automaton

= Algorithm: Subset-Construction (exponential blow-up)
= NFA: A = (£,Q,A,Q%F)
= DFA: A = (%, P(Q),A’,{Q%,F’) such that
= A:P(Q) XX — P(Q)where (Q,a,Q,) € A'if

Q, = U {q'|(q,a,q") € A}

q€Q1
Example: ({sg,s1},b,{so }) € A’ since
* (So,b,So) € A and
s (Sli b, So) EA
Non-deterministic automaton A Equivalent Det. automaton A’

@y G
a,b a 5 04 - & a
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Equivalent Deterministic Automaton

= Algorithm: Subset-Construction (exponential blow-up)
= NFA: A = (£,Q,A,Q%F)
= DFA: A = (%, P(Q),A’,{Q%,F’) such that
= A:P(Q) XX — P(Q)where (Q,a,Q,) € A'if
Q2 = U {4'1(q,a,q") € A}
q€Q1

" F'={Q'IQ'nF * @}

Non-deterministic automaton A Equivalent Det. automaton A’

@y G
a,b a 5 04 - & a
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Equivalent Deterministic Automaton

= Compute the equivalent DFA
= A = (%, P(Q),A’,{Q°,F) such that
= A:P(Q) XX — P(Q)where (Q,a,Q,) € A'if

Q, = U {q'|(q,a,q") € A}
qeQq

" F'={Q'IQ'nF # @}

Non-deterministic automaton A Equivalent Det. automaton A’
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Equivalent deterministic automaton

= Compute the equivalent DFA
= A = (%, P(Q),A’{Q%,F) such that
= A:P(Q) XX - P(Q)where (Q{,a,Q,) € A'if
0.= | Jwwlwagren
q€Qq

« F'={Q'|Q'nF 0}

Non-deterministic automaton A Eauivalent Det. automaton A’
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Complement of DFA

= The complement automaton A accepts exactly
those words that are rejected by A

= Construction of A
= Substitution of accepting and non-accepting states

A A

b b
e (s, a
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Consider NFA that accepts words that end with 001

*

A L HE
A EH@HXKGE

The language of this automaton is {0,1}* - this is wrong!
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Complement of NFA

= The complement automaton A accepts exactly
those words that are rejected by A

= Construction of A
1. Determinization: Convert NFA to DFA
2. Substitution of accepting and non-accepting states
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Intersections of NFAS

= Given two languages, L, and L,, the intersection of L, and L, is
L.NL, ={w|wel;,andweL,}
= Product automaton of A = A, X A, has L(A) = L(A,) N L(A,)
= ( = Q X Q, (Cartesian product),
= A((q1,92), a) = (A1(q1, @), y(qy, @)
= Q% =07 xQ3
" (q4,92) €E F iff gq,€ F; and q,€ F,
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2.
3.

Intersections of NFAS

A=A, X A,

States: (Sp,to), (Spity), (S1.to), (S1.ty)-
Initial state: (sy,t;).
Accepting states: (Sg,t), (Sg.ty)-
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Automata on infinite words (Blchi automata)
Deterministic vs non-deterministic Buchi automata
Intersection of Blchi automata

Checking emptiness of Buchi automata

Automata and Kripke Structures

Model checking using automata

Generalized Buchi automata

Translation of LTL to Blchi automata
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Automata on Infinite Words

We are interested in reactive systems
= Designed to not hold during normal execution

Computations are infinite sequences
= Words are v € %, where w denotes infinitely many (i.e., |v| = )

Languages accepted by finite automata on infinite words are called
w-regular languages.

Blchi Automata - Simplest automata over infinite words

SCOS
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Automata on Infinite Words (Buchi)
B = (2,Q,A,Q°F)

An infinite run p IS accepting < it visits an accepting state
an infinite number of times.

" inf(p) ... set of states in p that appear infinitely often
= inf(p) N F = @

L(B) € X2 is the set of all infinite words that B accepts

SCOS
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Automata on Infinite Words (Biichi)
B = (£,Q,A4,Q°F)

= pisaccepting © inf(p) N F = @

= What is the language of this automaton?

a L(B) = {words with an
Infinite number of a’s}
— or
£(8) = ({abya)
b .
a b
In LTL: GF(a)
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Deterministic vs non-deterministic Buchi automata
Intersection of Blichi automata

Checking emptiness of Buchi automata

Automata and Kripke Structures

Model checking using automata

Generalized Blchi automata

Translation of LTL to Blchi automata
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Det. and Non-det. Bluchi Automata

= Deterministic Bluchi automata are strictly less expressive
than nondeterministic ones.

= That is, not every nondeterministic Blichi automaton has an
equivalent deterministic Blichi one.

SCOS
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Det. and Non-det. Blichi Automata

There exists a non-deterministic Buchi
automaton B for which there is no equivalent
deterministic one.

The proof shows that there is no det. Blchi
Automaton for “finitely many”. Detailed proof see book.

L(B) = {words with a

Q b ’ finite number of a’s}
B HF o

hy L(B) = {a,b}'be

In )
FG—-aor FGb
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Det. and Non-det. Bluchi Automata

Lemma 2: Deterministic Biichi automata are not closed under
complementation.

Proof:
= Consider the language £ = {words with infinitely many a’s}.
= Construct a deterministic Blchi automaton A that accepts L.

= |ts complement is L'={words with finitely many a’s}, for which there is
no deterministic Buchi automaton (see Theorem). 0

Oy

a b b
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Det. and Non-det. Blichi Automata

Theorem: Nondeterministic Blichi automata are closed under
complementation.

= The construction is very complicated. We will not see it here.

= Blchi showed an algorithm for complementation that is double
exponential in the size n of the automaton

= Mooly Safra proved that it can be done by
20(n log n)
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Intersection of Blichi automata
Checking emptiness of Buchi automata
Automata and Kripke Structures

Model checking using automata
Generalized Buchi automata
Translation of LTL to Blchi automata
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Intersection of Blichi Automata
B, a B, b
’AQ (\g
\_/ \_/
a b b b g a

" L(B,) N L(B, =
{words with an infinite number of a’s and infinite number of b’s}
(not empty)

SCOS
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Intersection of Blichi Automata
B, a B, b
oWBOROWNO
\_/ \_/
a b b b g a

" L(B,) N L(B, =
{words with an infinite number of a’s and infinite number of b’s}

= A standard intersection does not work — the automaton
will not have any accepting states!

= Solution: Introduce counter!

SCOS
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Intersection of Blichi Automata

Given B, = (£,Q,,4,,Q,°.F;) and B, = (£,Q,,4,,Q,°.F,)
B =(X,Q,A,Q°%F) s.t. L(B) = L(B,) N L(B,) is defined as
follows:

" Q=Q,xQ,x{0,1, 2}

" Q°7Q,° x Q,°x {0}

"F=Q,xQ,x{2}

SCOS
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Intersection of Blichi Automata

((01,92:X), @, (4'1,9'2,X)) € A <
(1) (g.2,93) € A; and (0,,a,9°,) € A, and
(2) Ifx=0andq’;e F, then x'=1

If x=1 and q’,€ F, then x'=2

If x=2 then x’=0

Else, x'=x

Explanation: x=0 is waiting for an accepting state from F,
x=1 Is waiting for an accepting state from F,

If a state with x=2 is visited infinitely often, states from F;

have been visited infinitely often and states from F, have been visited
infinitely often.

SCOS
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Intersection of Biichi Automata

= The first copy waits for an accepting state of B,

= The second copy waits for an accepting state of B,

= All states in the third copy are accepting

=  Only the reachable states are drawn i

<r1’ d;, 0)

B, a
- X / N
QQIi:;!’ (ry, Oz, 1)

(2 Ay, 2)
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Intersection of Blichi Automata

Question

= |n every interval we first wait for F, and then wait for F,.

= We ignore accepting states that don’t appear in this order.
= Might we miss accepting pathsin B ?

Answer

= No. Since on an accepting path there are infinitely many
of those, ignoring finite number of them in each interval
will still lead us to the conclusion that the run is accepting

SCOS
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Model Checking of LTL
given an LTL property ¢ and a Kripke structure |V
check whether M = ¢

v/ Construct =g
2. Construct a Buchi automaton §_,
3. Translate M to an automaton A.
/ Construct the automaton B with £(B) = L(A) N L(S-,)
j> If L(B) = @ => A satisfies ¢
6. Otherwise, a word v - w® € L(B) is a counterexample
- a computation in M that does not satisfy ¢
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Checking emptiness of Buchi automata
Automata and Kripke Structures

Model checking using automata
Generalized Buchi automata

Translation of LTL to Blchi automata
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Checking for emptiness of £(B)

= An infinite run p Is accepting < it visits an accepting
state an infinite number of times.
= inf(p) N F = ¢

= How to check for L(A) = ©?
= Empty if there is no reachable accepting state on

i
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Non-emptiness <
Existence of reachable accepting cycles

= L(B) Is nonempty <
= The graph induced by B contains a path from an initial
state of B to a state t € F and a path from t back to itself.

SCOS
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Example
. IS accepting and

reachable from and
reachable from itself

@ (r1, dy, 0)
b
: a
(rp, 4y, 0)
b

(rp, dq,s 2) Q > (ry, do, 0)
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Model Checking of LTL
given an LTL property ¢ and a Kripke structure V|
check whether M = ¢

/ Construct -
2. Construct a Buchi automaton §_,
j> Translate M to an automaton cfl
/ Construct the automaton B with £(B) = L(A) N £L(S-,,)
v FL(B) =0 = A satisfies ¢
/ Otherwise, a word v - w® € L(B) Is a counterexample
: a computation in M that does not satisfy ¢
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Automata and Kripke Structures
Model checking using automata
Generalized Blchi automata
Translation of LTL to Blchi automata
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Kripke Structure M to Biichi Automaton A,

= Move labels to incoming transitions
* Push labels backwards

= All states are accepting
What about initial states?

51 {p,q}
{p,a} {a}

2 CAM . 52

{P}
RO

re rrect System:
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Kripke Structure M to Biichi Automaton A,

= Move labels to incoming transitions

= All states are accepting i
L
{p,a} {P}
{P}
| | T T
S0 S1 {p,a}
\ {p,a} {9}
M: 52 cAM : S,
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Automata and Kripke Structures

M=(S,Sy;, R,AP, L) = A, =(Z, SU{L}, A, {1}, SU{L}),
where X = P(AP).

» (s,0,8s)eA s (s,s)eERand a=L(s')

= (Las)eEAoseS,anda=L(s) |

P4} 1P}
1P}
i i T
>0 S1 {p,q)
\ P4} 19}
M: S Ay s,
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Model Checking of LTL
given an LTL property ¢ and a Kripke structure V|
check whether M = ¢

Construct -

Construct a Buchi automaton §_,

Translate M to an automaton A.

Construct the automaton B with £(B) = L(A) N £L(S-,,)
If L(B) = @ = A satisfies ¢

Otherwise, a word v - w® € L(B) Is a counterexample
: a computation in M that does not satisfy ¢

NN NN
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= Model checking using automata
= (Generalized Buchi automata
Translation of LTL to Blichi automata
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Model Checking when
system A and spec § are given as Blchi automata

» A satisfies § if L(A) S L(S)
» |s any behavior of A allowed by §7

Seqguences satisfying §

{Computations of A J

All possible sequences
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Model Checking when
System A and Spec § are given as Blchi automata

= A does not satisfy § if L(A) € L(S)

Counter- Sequences satisfying §

examples

Computations of A J

All possible sequences
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Model Checking when
system A and spec § are given as Blchi automata

= Check whether L(A) € L(S)
= Equivalent:
L(A) & L(S)

L(A) N LES) # ¢

L(A) € L(S) L(A) & L(S) = L(A) N LS) #

Sequences satisfying § Sequences satisfying §

Counter-
examples

Computations of A J

{Computations of A }

All possible sequences

SCOS
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All possible sequences




Model Checking — Suggested Algorithm

when system A and spec 8§ are given as Blchi Automata

Complement §. The resulting Blichi automaton is §

1.

/ Construct the automaton B with £(B) = L(A) N L(S)

/ If L(B) = @ = A satisfies §

/ Otherwise, a word v - w® € L(B) is a counterexample
3 a computation in A that does not satisfy §

L(A) N LES)# ¢

Counter- Sequences satisfying §

examples

Computations of A J

All possible sequences
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Model Checking of LTL
given an LTL property ¢ and a Kripke structure |V
check whether M = ¢

Construct - N
o

Construct a Buchi automaton §_;°

Translate M to an automaton A.

Construct the automaton B with £L(B) = L(A) N L(S-,)

If L(B) = @ > A satisfies ¢

Otherwise, a word v - w® € L(B) is a counterexample
a computation in M that does not satisfy ¢
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