
Model Checking Practicals:
Assignment 3 - K-Induction

May 6, 2024

1 Assignment Summary
The goal of the third exercise in the model checking practicals is to implement
the k-induction (KIND) method. The implementation is supposed to closely
follow the Model Checking book. Your implementation must extend the pro-
vided framework to implement KIND using incremental solving with Z3, while
also supporting BMC from the previous assignment. All work is done in the
same hwmc directory as the second assignment. The preliminary submission
deadline is Sunday 2nd of June end-of-day. We provide question hours dur-
ing practicals sessions every Monday at 11:00. You can also ask questions over
Discord in the dedicated channel. The rest of the document provides more
details.

2 Setup and Submission
The tags for this assignment are kind and kind-final. Only commits with the
kind-final tag that were submitted before the deadline will be graded. For
more details on setting up your wor environment and managing your repository,
please consult the guide in the warmup assignment handout.

3 Bounded Model Checking
This section briefly recounts the formalization of BMC you should use as a
guide for the actual implementation tasks. BMC is an algorithm that unrolls
the hardware up to a certain depth and checks whether any bad states can be
reached. As such BMC maintains a trace of frames, where each frame corre-
sponds to the state of a circuit in a given clock cycle. Each frame consists of
several components. The frame has a set of variables Vi for registers and in-
puts, and a set of formulas Fi for the intermediate computations of wires. For
the transitions between the (i− 1)-th and i-th frame, BMC constructs a set of
equalities Ti := {v = w} where v ∈ Vi and w ∈ Vi−1 ∪Fi−1 ∪L and L is a set of

1

constants. Using this notation, we can think of the initial state V0 as being con-
strained with equalities T0 where V−1 ∪ F−1 = ∅, i.e., the initial state variables
v ∈ Vi are set to equal some constants through equalities T0. Additionally, the
set of constraints Ci makes sure that the solver respects the assumptions about
the circuit’s environment.

In each BMC step, the implementation tries to find a sequence of states
such that the last state in the sequence satisfies a bad state property. If we call
Bi the set of bad state properties in each frame, then the solver tries to solve
Equation 1. (∨

b∈Bk

b

)
∧

k∧
i=0

((∧
t∈Ti

t

)
∧

(∧
c∈Ci

c

))
(1)

Because the BMC algorithm is iterative, and would have already proven that
none of the bad state properties b ∈ Bi are reachable in i < k steps, we can add
them to the problem we are trying to solve, in order to speed up the solving
process, as shown in Equation 2.(∨

b∈Bk

b

)
∧

k∧
i=0

((∧
t∈Ti

t

)
∧

(∧
c∈Ci

c

))
∧

k−1∧
i=0

(∧
b∈Bi

¬b

)
(2)

If any such states are found, BMC terminates and prints the counterexample
as a simulation trace for the given circuit. In case none are found, BMC expands
the trace by one frame and tries again. Note here, that the bad state property
is only checked in the last frame, as the previous iteration show that no bad
state is reachable in any of the previous frames.

4 K-Induction
This section briefly summarizes k-induction and you should use it as a guide for
your implementation later on. The formulas required for checking KIND and
BMC are very similar, so in your implementation, you will reuse the same solver
for both.

K-induction, as used in model checking has two phases. The initiation phase
is the same as BMC and checks whether a bad state is reachable in k transitions.
If this phase fails, the algorithm aborts and reports the BMC counterexample.
The consecution phase, commonly referred to as inductive step, checks whether,
given that no bad state is reached in k-1 transitions, a bad state can be reached
in the k-th transition. In the case a bad state is not reachable, k-induction
has proven that a bad state is never reachable. Otherwise, if the k-th transi-
tion reaches a bad state, then k is incremented and the whole process repeats.
Equation 3 summarizes the consecution phase.(∨

b∈Bk

b

)
∧

k∧
i=1

(∧
t∈Ti

t

)
∧

k∧
i=0

(∧
c∈Ci

c

)
∧

k−1∧
i=0

(∧
b∈Bi

¬b

)
(3)

2

Looking at Equations 2 and 3 more closely, we see that they share everything
except the transition conditions of the initial state, i.e.

∧
t∈T0

t. This already
gives you an idea of how you should implement this.

Furthermore, as it is, the K-induction from Equation 3 is not complete. This
is because there could be a reachable loop of good states from which a bad state
is reachable. The KIND routine would then just repeat these states indefinitely.
Therefore, we add a constraint that all of the reached states are different, shown
in Equation 4. Here v and v′ refer to the same register or input instantiated in
different frames.

k∧
i=0

i−1∧
j=0

 ∨
v∈Vi,v′∈Vj

v 6= v′

 (4)

5 Task 1: Implement K-Induction [12+10 Points]
The forwarding functions were implemented in the previous assignment. For
KIND, you will at most need to adapt them slightly. Like before, model checker
keeps everything required for BMC and KIND ready.

The difference between BMC and KIND is the initial transition that defines
the constraints for the first frame. Until now, this was always pushed into the
solver just like every other transition. Now, you need to adapt this so that the
constraints are saved by the Checker class. Then, in case you are doing BMC,
you add them temporarily before calling z3::solver::check. For KIND you
do not add the initial transition constraints into the solver.

You have to implement the KIND method inside the check_kind function.
It is triggered by passing the -kind command line option. Your implementation
follows the same principle as BMC, and almost every part of Equation 3 should
already be inside solver after calling Checker::forward.

The only missing part of Equation 3 should be
∨

b∈Bk
b. Just like for BMC,

you should break down the checking for bad states so that every b ∈ Bk is
checked separately. That is, iterate through all bad state properties, add the
current one into the solver, and check for satisfiability. If the solver says UNSAT,
you are done with this bad property and have proven that it is not reachable.
Add it to a list of impossible bad properties and skip them when checking higher
k later on. Otherwise, if the solver says SAT the bad state property is still
reachable and you have to check it for a higher k. In any case, undo the addition
into the solver and continue with the next bad property. After checking the bad
state properties, return the number of still reachable bad state properties from
check_kind.

For the second part of the implementation, implement the complete version
of KIND by adding the constraints from Equation 4 into the solver. The easiest
way of implementing this is modifying Checker::forward_state and storing a
large concatenation of the state variables for each frame inside the Checker class.
Then, you can use z3::distinct to say that each of the frames is different.

3

Because of KIND, there might be bad state properties that you have already
proven impossible. If there are any, do not check their reachability again with
BMC.

6 Task 3: Testcases [8 Points]
For the last task, you are supposed to implement small hardware modules in
(System)Verilog, translate them to BTOR using Yosys and use them to test
your implementation of KIND.

VLOG_FILE="my_test.v" \
TOP_MODULE="my_test" \
BTOR_FILE="my_test.btor" \
yosys verilog_btor.tcl

You can also use the makefile we provide for SystemVerilog support. If you
have installed the SV2v utility1 and have a SystemVerilog file my_test.sv in
your tests directory, just run:

make my_test.btor

The idea behind this task is to thoroughly test your implementation. These
testcases are supposed to show different aspects of your KIND implementation,
e.g., testcases that prove unreachability of bad states at different depths k,
tests that would not terminate without you implementing the completeness
constraints and so on. Since the tests are in the same directory as the BMC tests,
we distinguish them by their reported results on the reference implementation.
Tests with bugs are counted towards BMC, whereas tests without bugs are
counted towards KIND. Points gained per testcase are exponentially decaying.
The first four testcases each give 1 point, the next eight testcases each give
0.5 point for a total of 8 points. Finally, earning points for testcases is going
go through randomized manual review, and e.g., submitting 12 testcases that
check whether a counter ever reaches the numbers from 1 to 12 is not going to
be considered a valid test suite. Moreover, a bad performance on private tests
will scale the points you get from writing tests accordingly. For example, if your
KIND implementation only correctly solves 50% of our private test suite, your
test suite only receives 50% of the points you would have otherwise gotten. You
should also document your testcases. If it is not obvious at a glance what you
are actually doing in the testcase, it might lead to you not getting any points
during the randomized manual review.

1https://github.com/zachjs/sv2v

4

https://github.com/zachjs/sv2v

	Assignment Summary
	Setup and Submission
	Bounded Model Checking
	K-Induction
	Task 1: Implement K-Induction [12+10 Points]
	Task 3: Testcases [8 Points]

