Probabilistic Model Checking

Stefan Pranger

3. 6. 2024

IIAIK

Communication Protocol

Communication Protocol

But \mathcal{M}, start $\models \exists \mathbf{G} \neg$ delivered ?
or \mathcal{M}, start $\models \forall \mathbf{F}$ delivered ?

Communication Protocol

Does not make sense with probabilities! \rightarrow We need new descriptions for properties.
We have different models.

IAIK

Markov Chains

Markov Chain $\mathcal{M}=\left(S, \mathbb{P}, s_{0}, A P, L\right)$

- S a set of states and initial state s_{0},
- $\mathbb{P}: S \times S \rightarrow[0,1]$, s.t.

$$
\sum_{s^{\prime} \in S} \mathbb{P}\left(s, s^{\prime}\right)=1 \forall s \in S
$$

- $A P$ set of atomic propositions and $L: S \rightarrow 2^{A P}$ a labelling function.

What properties are we interested in?

What properties are we interested in?

- What is the probability to eventually send the message (within n steps)?

What properties are we interested in?

- What is the probability to eventually send the message (within n steps)?
- What is the probability to reach the destination without every running into an unsafe area?

IAIK

What properties are we interested in?

- What is the probability to eventually send the message (within n steps)?
- What is the probability to reach the destination without every running into an unsafe area?
- What is the probability to send 6 messages successfully and only failing a maximum amount of 15 times?

IIAIK
But rst... How do we describe models?

IAIK

But rst... How do we describe models?

- Describe states through variables:

。 $x \in[0,20], y \in[0,20]$, velocity $\in[0,1], \ldots$

IAIK 12

But rst... How do we describe models?

- Describe states through variables:
- $x \in[0,20], y \in[0,20]$, velocity $\in[0,1], \ldots$
- processor_one_idle,processor_two_idle,...

IIAIK
13

But rst... How do we describe models?

- Describe states through variables:
- $x \in[0,20], y \in[0,20]$, velocity $\in[0,1], \ldots$
- processor_one_idle,processor_two_idle,...
- agent_is_on_slippery,...

。 ...

IAIK
14

But rst... How do we describe models?

- Describe states through variables:
- $x \in[0,20], y \in[0,20]$, velocity $\in[0,1], \ldots$
- processor_one_idle,processor_two_idle,...
- agent_is_on_slippery,...
- ...
- For each possible state we describe the possible variable updates:
- If $x>10 \& y<10 \&$ agent_is_on_slippery then the agent moves to one of its adjacent cells each with probability $1 / 4$.
- If processor_one_idle \& processor_two_idle then the process will be processed by processor one or two.

IAIK 15

But rst... How do we describe models?

- Describe states through variables:
- $x \in[0,20], y \in[0,20]$, velocity $\in[0,1], \ldots$
- processor_one_idle,processor_two_idle,...
- agent_is_on_slippery,...
- ...
- For each possible state we describe the possible variable updates:
- If $x>10 \& y<10 \&$ agent_is_on_slippery then the agent moves to one of its adjacent cells each with probability $1 / 4$.
- If processor_one_idle \& processor_two_idle then the process will be processed by processor one or two.
- If processor_one_idle \& processor_two_idle then we can decide to use processor one or two.

IAIK 16

The PRISM Modelling Language

- Modules: Group associated behaviour
endmodule
module processor2
endmodule

IAIK 17

The PRISM Modelling Language

- Modules: Group associated behaviour
module processor1 module processor2
. . endmodule
... endmodule
- Variables (Constants) : Either bool or integer (or double):

```
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;
```

IAIK 18

The PRISM Modelling Language

- Modules: Group associated behaviour

```
module processor1
module processor2
. . endmodule
. endmodule
```

- Variables (Constants) : Either bool or integer (or double):

```
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;
```

- Updating variables of a module is restricted to each module, e.g. private access.

The PRISM Modelling Language

- Modules: Group associated behaviour
module processor1 ... endmodule
module processor2 ... endmodule
- Variables (Constants) : Either bool or integer (or double):
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;
- Updating variables of a module is restricted to each module, e.g. private access.
- Commands:
[] $x=0$-> 0.8: $\left(x^{\prime}=0\right)+0.2:\left(x^{\prime}=1\right)$;
[moveNorth] x<height -> 0.9: $\left(x^{\prime}=x+1\right)+0.1:$ true;

The PRISM Modelling Language

- Modules: Group associated behaviour

```
module processor1
module processor2 ... endmodule
```

- Variables (Constants) : Either bool or integer (or double):

```
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;
```

- Updating variables of a module is restricted to each module, e.g. private access.
- Commands:
[] $x=0->0.8:\left(x^{\prime}=0\right)+0.2:\left(x^{\prime}=1\right)$;
[moveNorth] $x<$ height -> 0.9: $\left(x^{\prime}=x+1\right)+0.1$: true;
- We use it to describe the set of possible states and transitions between them.

The PRISM Modelling Language

- Formulas and Labels:
formula num_tokens = q1+q2+q3+q+q5;
formula crash = x1=x2 \& y1=y2;
label "crashed" = crash
//[moveNorth] !crash \&

The PRISM Modelling Language

- Formulas and Labels:
formula num_tokens = q1+q2+q3+q+q5;
formula crash = x1=x2 \& y1=y2;
label "crashed" = crash
//[moveNorth] !crash \&
- Turn-based behaviour:

```
[] move=0 & ... -> ... & (move'=1);
[] move=1 & ... -> ... & (move'=2);
etc.
```

IAIK 23

The PRISM Modelling Language

- Formulas and Labels:
formula num_tokens = q1+q2+q3+q+q5;
formula crash = x1=x2 \& y1=y2;
label "crashed" = crash
//[moveNorth] !crash \&
- Turn-based behaviour:
[] move=0 \& ... -> ... \& (move'=1);
[] move=1 \& ... -> ... \& (move' $=2$);
etc.
- Rewards:
rewards
$x>0$ \& $x<10$: 2*x;
$x=10$: 100;
[a] true : x;
[b] true : 2*x;
endrewards

The PRISM Modelling Language

- Modelling language allows to design models in a code-like style
- Code de-duplication with formulas and labels

IAIK

The PRISM Modelling Language

- Modelling language allows to design models in a code-like style
- Code de-duplication with formulas and labels

Other concepts include:

- Module Renaming module Proc2 = Proc1 [idle2=idle1, ...] endmodule
- Synchronization between modules
- Partially Observable Models
- Continuous-time Models
- Process Algebra Operators

Communication Protocol

dtmc

Communication Protocol

dtmc

Live Coding!

IAIK 28

Communication Protocol


```
dtmc
label "success" = delivered=1;
label "lost" = lost=1;
module msg_delivery
    start: [0..1] init 1;
    try: [0..1] init 0;
    lost: [0..1] init 0;
    delivered: [0..1] init 0;
    [] start=1 -> 1: (start'=0) & (try'=1);
    [] try=1 -> 0.1: (try'=0) & (lost'=1) +
    [] lost=1 -> 1: (lost'=0) & (try'=1);
    [] delivered=1 -> 1: (delivered'=0) & (start'=1);
endmodule
```


Communication Protocol with Counting

Live Coding!

Communication Protocol with Counting


```
dtmc
label "success" = delivered=1;
label "lost" = lost=1;
const int MAX_COUNT;
module msg_delivery
    start: [0..1] init 1
    try: [0..1] init 0;
    lost: [0.1] init 0;
    delivered: [0.1] init 0
    delivered count: [0..MAX COUNT] init 0;
    delivered_count: [0..MAX_COUNT] init
    [] start=1 -> 1: (start'=0) & (try'=1)
    [] try=1 -> 0.1: (try'=0) & (lost'=1) +
    0.9: (try'=0) & (delivered'=1);
    [] lost=1 & lost_count<MAX_COUNT (lost'=0) & (try'=1) & (lost_count'=lost_count+1);
    [] delivered=1 & delivered_count<<MAX_COUNT -> 1: (delivered'=0) &
                                    (start'=1) &
                                    (delivered_count'=delivered_count+1) &
                                    (lost_count'=0);
    [] lost=1 & lost_count=MAX_COUNT -> 1: (lost'=0) & (try'=1) & (lost_count'=lost_count);
    [] delivered=1 & delivered_count=MAX_COUNT -> 1: (delivered'=0) &
                                    start
                                    delivered count'=delivered count) &
                                    (lost count'=0);
```


Simulating Urban Environments

dtmc
module car
// x and y coordinates, velocity
endmodule
module pedestrian
// x and y coordinates, viewing direction in \{left, right, north\}

Probabilistic Reachability

- We start with objectives similar to the ones discussed at the beginning of the semester:

What is the probability that our system reaches its goal state?

Before we talk about Algorithms...

Before we talk about Algorithms...

How can we represent a MC in code/memory?

Before we talk about Algorithms...

How can we represent a MC in code/memory?

Before we talk about Algorithms...

How can we represent a MC in code/memory?

Model Checking with Markov Chains

- Explicit CTL model checking allows qualitative model checking.
- \mathcal{M}, start $\models \exists \mathbf{G} \neg$ delivered ?

Model Checking with Markov Chains

- Explicit CTL model checking allows qualitative model checking.
- \mathcal{M}, start $\models \exists \mathbf{G} \neg$ delivered ?
- We want to do quantitative model checking.
- How likely is the system to fail?

$$
\operatorname{Pr}\left(\mathcal{M}, s \models \mathbf{F} s_{\text {error }}\right)
$$

- Whats the probability of my message to arrive after infinitely many tries?

$$
\operatorname{Pr}(\mathcal{M}, s \models \mathbf{F} \text { delivered })
$$

IAIK 39

Paths

- A path $\pi=s_{0} s_{1} s_{2} \ldots \in S^{\omega}$, s.t. $\mathbb{P}\left(s_{i}, s_{i+1}\right)>0, \forall i \geq 0$
- $\operatorname{Paths}(\mathcal{M})$ is the set of all paths in \mathcal{M} and
- Path $_{f i n}(\mathcal{M})$ is the set of all finite path fragments in \mathcal{M}.

IAIK

Events and Paths

In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

- Outcomes $=\{H H, H T, T H, T T\}$
- Events $=\{H H\},\{H T\},\{T H\},\{T T\}$

We could, for example, be interested in the events where H is thrown first $=\{H H\},\{H T\}$.
What is a possible outcome in a specific Markov Chain \mathcal{M} ?

Events and Paths

In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

- Outcomes $=\{H H, H T, T H, T T\}$
- Events $=\{H H\},\{H T\},\{T H\},\{T T\}$

We could, for example, be interested in the events where H is thrown first $=\{H H\},\{H T\}$.
What is a possible outcome in a specific Markov Chain \mathcal{M} ?
\rightarrow an infinite path $\pi \in \operatorname{Paths}(\mathcal{M})!$

- Outcomes $=\operatorname{Paths}(\mathcal{M})$
- Events of interest are $\hat{\pi}_{1}, \hat{\pi}_{2}, \ldots \in$ Path $_{\text {fin }}(\mathcal{M})$ that satisfy our property
- Formally we introduce the cylinder set of a prefix:

$$
\operatorname{Cyl}\left(\hat{\pi}_{i}\right)=\left\{\pi \in \operatorname{Paths}(\mathcal{M}) \mid \hat{\pi}_{i} \in \operatorname{pref}(\pi)\right\}
$$

IAIK

Events and Paths

What is a possible outcome in a specific Markov Chain \mathcal{M} ?
\rightarrow an infinite path $\pi \in \operatorname{Paths}(\mathcal{M})$!

- Outcomes $=\operatorname{Paths}(\mathcal{M})$
- Events of interest are $\hat{\pi}_{1}, \hat{\pi}_{2}, \ldots \in$ Paths $_{\text {fin }}(\mathcal{M})$ that satisfy our property
- Formally we introduce the cylinder set of a prefix:

$$
\operatorname{Cyl}\left(\hat{\pi}_{i}\right)=\left\{\pi \in \operatorname{Paths}(\mathcal{M}) \mid \hat{\pi}_{i} \in \operatorname{pref}(\pi)\right\}
$$

- The probability of one event of interest is then:

$$
\operatorname{Pr}\left(C y l\left(\hat{\pi}_{i}\right)\right)=\operatorname{Pr}\left(\operatorname{Cyl}\left(s_{0} s_{1} \ldots s_{n}\right)\right)=\prod_{0 \leq i<n} \mathbb{P}\left(s_{i}, s_{i+1}\right)
$$

Reachability Probabilities

Let $B \subseteq S$ be a set of states. We are interested in

$$
\operatorname{Pr}\left(\mathcal{M}, s_{0} \models \mathbf{F} B\right)
$$

Reachability Probabilities

Let $B \subseteq S$ be a set of states. We are interested in

$$
\operatorname{Pr}\left(\mathcal{M}, s_{0} \models \mathbf{F} B\right)
$$

We can characterize all path fragments π that satisfy $\mathbf{F} B$ with the set

$$
\Pi_{\mathbf{F} B}=\operatorname{Path}_{f_{f i n}}(\mathcal{M}) \cap(S \backslash B)^{*} B
$$

All $\hat{\pi} \in \Pi_{\mathbf{F} B}$ are pairwise disjoint, hence:

$$
\operatorname{Pr}\left(\mathcal{M}, s_{0} \models \mathbf{F} B\right)=\sum_{\hat{\pi} \in \Pi_{\mathbf{F} B}} \operatorname{Pr}(\operatorname{Cyl}(\hat{\pi}))
$$

Computing $\operatorname{Pr}\left(\mathcal{M}, s_{0} \models C \mathbf{U} B\right)$

- We know that $\mathbf{F} B \equiv C \mathbf{U} B$, with $C=S$ or simply 'true $\mathbf{U} B^{\prime}$ - Develop algorithm for arbitrary C

Computing $\operatorname{Pr}\left(\mathcal{M}, s_{0} \models C \mathbf{U} B\right)$

- We know that $\mathbf{F} B \equiv C \mathbf{U} B$, with $C=S$ or simply 'true $\mathbf{U} B^{\prime}$ - Develop algorithm for arbitrary C

2-step algorithm:

1) Identify three disjoint subsets of S :

- $S_{=1}$: The set of states with probability of 1 to reach B.
- $S_{=0}$: The set of states with probability of 0 to reach B.
- $S_{?}$: The set of states with probability $\in(0,1)$ to reach B.

Computing $\operatorname{Pr}\left(\mathcal{M}, s_{0} \models C \mathbf{U} B\right)$

- We know that $\mathbf{F} B \equiv C \mathbf{U} B$, with $C=S$ or simply 'true $\mathbf{U} B^{\prime}$
- Develop algorithm for arbitrary C

2-step algorithm:

1) Identify three disjoint subsets of S :

- $S_{=1}$: The set of states with probability of 1 to reach B.
- $S_{=0}$: The set of states with probability of 0 to reach B.
- $S_{?}$: The set of states with probability $\in(0,1)$ to reach B.

2) Compute the probabilities for all $s \in S_{?}$.

IAIK

Computing $S_{=1}$ and $S_{=0}$

We can use DFS to compute these sets:

IAIK

Computing $S_{=1}$ and $S_{=0}$

We can use DFS to compute these sets:

IIAIK
50

Computing $S_{\text {? }}$

We are left with computing the probabilities for $s \in S_{\text {? }}$

IIAIK 52

Computing $S_{\text {? }}$

We are left with computing the probabilities for $s \in S_{\text {? }}$

Computing $S_{\text {? }}$

We are left with computing the probabilities for $s \in S_{\text {? }}$

- The probability to reach $S_{=1}$ in one step: $\sum_{u \in S_{=1}} \mathbb{P}(s, u)$
- and the probability to reach $S_{=1}$ via a path fragment $(s t \ldots u): \sum_{t \in S_{?}} \mathbb{P}(s, t) \cdot x_{t}$
- Together

$$
x_{s}=\sum_{t \in S_{?}} \mathbb{P}(s, t) \cdot x_{t}+\sum_{u \in S_{=1}} \mathbb{P}(s, u)
$$

IAIK 54

Computing $S_{\text {? }}$

Let us rewrite this into matrix notation:

- $A_{?}=(\mathbb{P}(s, t))_{s, t \in S_{?}}$
- $x=\left(x_{s}\right)_{s \in S \text { ? }}$
- $b=\left(\sum_{u \in S_{=1}} \mathbb{P}(s, u)\right)_{s \in S_{\text {? }}}$

IAIK 55

Computing $S_{\text {? }}$

Let us rewrite this into matrix notation:

- $A_{?}=(\mathbb{P}(s, t))_{s, t \in S_{?}}$
- $x=\left(x_{s}\right)_{s \in S \text { ? }}$
- $b=\left(\sum_{u \in S_{=1}} \mathbb{P}(s, u)\right)_{s \in S_{?}}$

$$
x_{s}=\sum_{t \in S_{?}} \mathbb{P}(s, t) \cdot x_{t}+\sum_{u \in S_{=1}} \mathbb{P}(s, u) \rightsquigarrow x=A_{?} \cdot x+b=\left(I-A_{?}\right) \cdot x=b
$$

Communication Protocol

Communication Protocol

$$
\mathbf{A}_{?}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & \frac{1}{10} \\
0 & 1 & 0
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
0 \\
\frac{9}{10} \\
0
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -\frac{1}{10} \\
0 & -1 & 1
\end{array}\right] \cdot \mathbf{x}=\left(\begin{array}{c}
0 \\
\frac{9}{10} \\
0
\end{array}\right) \rightarrow \mathbf{x}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

IIAIK
58

Done

Transient State Probabilities

We will consider a slightly different algorithm:

$$
\mathbf{A}^{n}=\mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdots \cdots \mathbf{A}
$$

contains the probability to be in state t after n steps in entry $\mathbf{A}^{n}(s, t)$.
We call

$$
\Theta_{n}^{\mathcal{M}}(t)=\sum_{s \in S} \mathbf{A}^{n}(s, t)
$$

the transient state probability for state t.

Transient State Probabilities

Let's consider $\left(\Theta_{n}^{\mathcal{M}}(t)\right)_{s \in S}$, the vector of transient state probabilities for the nth step.
We can compute $\operatorname{Pr}\left(\mathcal{M}, s_{0} \models \mathbf{F}^{\leq n} B\right)$ in a modified Markov chain:

$$
\mathcal{M}_{B}=\left(S, s_{0}, \mathbb{P}_{B}, A P, L\right)
$$

where:

- $\mathbb{P}_{B}(s, t)=\mathbb{P}(s, t)$ if $s \notin B$
- $\mathbb{P}_{B}(s, s)=1$ if $s \in B$
- $\mathbb{P}_{B}(s, t)=0$ if $s \in B$ and $t \notin B$
i.e. all $s \in B$ become sinks and B cannot be left anymore.

Transient State Probabilities

- $\mathbb{P}_{B}(s, t)=\mathbb{P}(s, t)$ if $s \notin B$
- $\mathbb{P}_{B}(s, s)=1$ if $s \in B$
- $\mathbb{P}_{B}(s, t)=0$ if $s \in B$ and $t \notin B$
i.e. all $s \in B$ become sinks and B cannot be left anymore.

We then have

$$
\operatorname{Pr}\left(\mathcal{M}, s \models \mathbf{F}^{\leq n} B\right)=\operatorname{Pr}\left(\mathcal{M}_{B}, s \models \mathbf{F}^{=n} B\right)
$$

and therefore

$$
\operatorname{Pr}\left(\mathcal{M}, s \models \mathbf{F}^{\leq n} B\right)=\sum_{t \in B} \Theta_{n}^{\mathcal{M}_{B}}(t)
$$

Computing $\operatorname{Pr}\left(\mathcal{M}, s \models \mathbf{F}^{\leq n} B\right)$ via Transient State Probabilities

We have the following algorithm to compute $\operatorname{Pr}\left(\mathcal{M}, s \models \mathbf{F}^{\leq n} B\right)$:

- $\Theta_{0}^{\mathcal{M}}(t)=\mathbf{e}_{i}$, i.e. the unit vector with 1 at the i th position and 0 else.
- For $k=0$ up to $n-1: \Theta_{k+1}^{\mathcal{M}}(t)=\mathbf{A} \cdot \Theta_{k}^{\mathcal{M}}(t)$
- $\operatorname{Pr}\left(\mathcal{M}, s \models \mathbf{F}^{\leq n} B\right)=\sum_{t \in B} \Theta_{n}^{\mathcal{M}_{B}}(t)$

