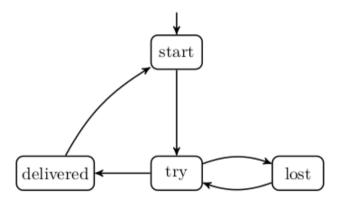


Probabilistic Model Checking

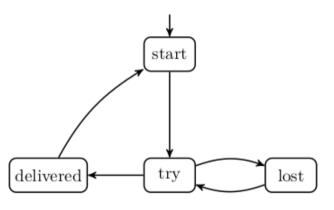
Stefan Pranger

03.06.2024

Communication Protocol



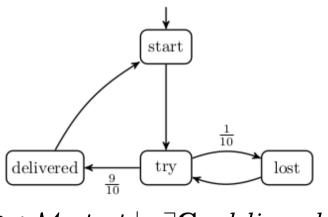
Communication Protocol



But \mathcal{M} , start $\models \exists \mathbf{G} \neg delivered$?

or \mathcal{M} , start $\models \forall \mathbf{F} \ delivered$?

Communication Protocol



But \mathcal{M} , start $\models \exists \mathbf{G} \neg delivered$?

or $\mathcal{M}, start \models \forall \mathbf{F} \ delivered$?

Does not make sense with probabilities! \rightarrow We *need* new descriptions for properties.

We have different models.

Markov Chains

Markov Chain $\mathcal{M} = (S, \mathbb{P}, s_0, AP, L)$

- S a set of states and initial state s_0 ,
- $\mathbb{P}:S imes S o [0,1]$, s.t.

$$\sum_{s'\in S} \mathbb{P}(s,s') = 1 \ orall s \in S$$

- AP set of atomic propositions and $L:S
ightarrow 2^{AP}$ a labelling function.

LIAIK What properties are we interested in? 6

TAIK 7

What properties are we interested in?

• What is the probability to eventually send the message (within *n* steps)?

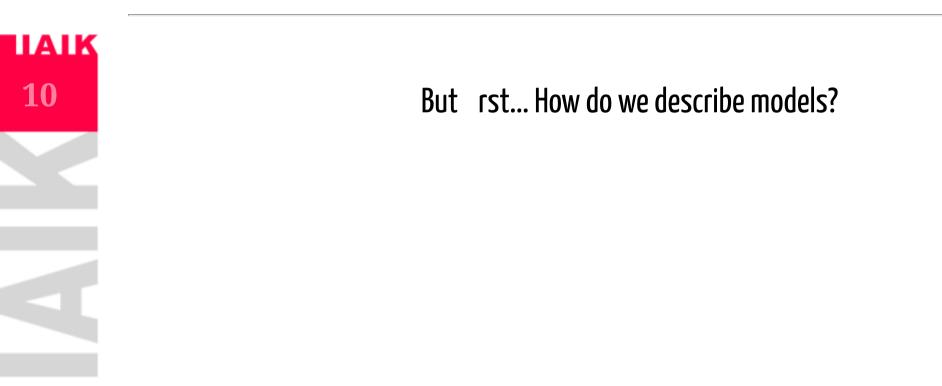
8 What properties are we interested in?

- What is the probability to eventually send the message (within *n* steps)?
- What is the probability to reach the destination without every running into an unsafe area?

ΙΑΙΚ What properties are we interested in?

9

- What is the probability to eventually send the message (within *n* steps)?
- What is the probability to reach the destination without every running into an unsafe area?
- What is the probability to send 6 messages successfully and only failing a maximum amount of 15 times?



But rst... How do we describe models?

• Describe states through variables: $\circ \ x \in [0,20], y \in [0,20], velocity \in [0,1], \ldots$

But rst... How do we describe models?

- Describe states through variables: $\circ \ x \in [0,20], y \in [0,20], velocity \in [0,1], \ldots$
 - $\circ \ processor_one_idle, processor_two_idle, \ldots$

But rst... How do we describe models?

• Describe states through variables: $\circ \ x \in [0,20], y \in [0,20], velocity \in [0,1], \ldots$

 $\circ \ processor_one_idle, processor_two_idle, \ldots$

 $\circ agent_is_on_slippery, \dots$

° ...

14

But rst... How do we describe models?

- Describe states through variables:
 - $\circ \ x \in [0,20], y \in reve{[}0,20], velocity \in [0,1], \ldots$

 $\circ \ processor_one_idle, processor_two_idle, \ldots$

 $\circ \ agent_is_on_slippery, \dots$

° ...

- For each possible state we describe the possible variable updates:
 - If $x > 10 \& y < 10 \& agent_is_on_slippery$ then the agent moves to one of its adjacent cells each with probability 1/4.
 - If *processor_one_idle* & *processor_two_idle* then the process will be processed by processor one or two.

15

But rst... How do we describe models?

- Describe states through variables:
 - $\circ \ x \in [0,20], y \in reve{[}0,20reve{]}, velocity \in [0,1], \ldots$
 - $\circ \ processor_one_idle, processor_two_idle, \ldots$
 - $\circ \ agent_is_on_slippery, \ldots$
 - ° ...
- For each possible state we describe the possible variable updates:
 - If $x > 10 \& y < 10 \& agent_is_on_slippery$ then the agent moves to one of its adjacent cells each with probability 1/4.
 - If *processor_one_idle* & *processor_two_idle* then the process will be processed by processor one or two.
 - If *processor_one_idle* & *processor_two_idle* then we can **decide** to use processor one or two.

The **PRISM** Modelling Language

• Modules: Group associated behaviour

module processor1 ... endmodule
module processor2 ... endmodule

The **PRISM** Modelling Language

• Modules: Group associated behaviour

module processor1 ... endmodule
module processor2 ... endmodule

• Variables (Constants) : Either bool or integer (or double):

```
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;
```


The **PRISM** Modelling Language

• Modules: Group associated behaviour

module processor1 ... endmodule
module processor2 ... endmodule

• Variables (Constants) : Either bool or integer (or double):

```
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;
```

• Updating variables of a module is restricted to each module, e.g. private access.

The **PRISM** Modelling Language

• Modules: Group associated behaviour

```
module processor1 ... endmodule
module processor2 ... endmodule
```

• Variables (Constants) : Either bool or integer (or double):

```
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;
```

• Updating variables of a module is restricted to each module, e.g. private access.

• Commands:

```
[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);
[moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;
```


1AIK 20

The **PRISM** Modelling Language

• Modules: Group associated behaviour

```
module processor1 ... endmodule
module processor2 ... endmodule
```

• Variables (Constants) : Either bool or integer (or double):

```
x : [0..2] init 0;
b : bool init false;
global temperature : [0..100] init 32;
const double pi = 3.14;
```

• Updating variables of a module is restricted to each module, e.g. private access.

• Commands:

[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1); [moveNorth] x<height -> 0.9: (x'=x+1) + 0.1: true;

• We use it to describe the set of possible states and transitions between them.

The **PRISM** Modelling Language

• Formulas and Labels:

formula num_tokens = q1+q2+q3+q+q5;
formula crash = x1=x2 & y1=y2;
label "crashed" = crash
//[moveNorth] !crash & ... -> ...;

The **PRISM** Modelling Language

• Formulas and Labels:

```
formula num_tokens = q1+q2+q3+q+q5;
formula crash = x1=x2 & y1=y2;
label "crashed" = crash
//[moveNorth] !crash & ... -> ...;
```

• Turn-based behaviour:

[] move=0 & ... -> ... & (move'=1); [] move=1 & ... -> ... & (move'=2); etc.

The **PRISM** Modelling Language

• Formulas and Labels:

```
formula num_tokens = q1+q2+q3+q+q5;
formula crash = x1=x2 & y1=y2;
label "crashed" = crash
//[moveNorth] !crash & ... -> ...;
```

• Turn-based behaviour:

```
[] move=0 & ... -> ... & (move'=1);
[] move=1 & ... -> ... & (move'=2);
etc.
```

• Rewards:

```
rewards
x>0 & x<10 : 2*x;
x=10 : 100;
[a] true : x;
[b] true : 2*x;
endrewards</pre>
```


The **PRISM** Modelling Language

- Modelling language allows to design models in a code-like style
- Code de-duplication with formulas and labels

The **PRISM** Modelling Language

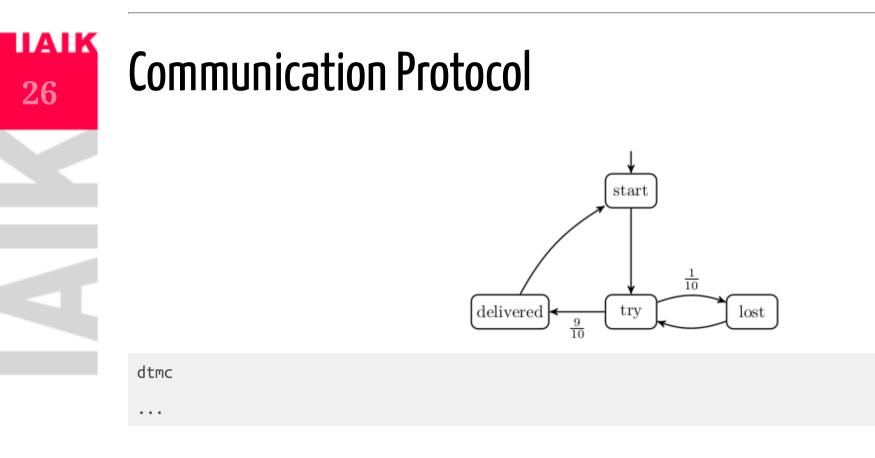
- Modelling language allows to design models in a code-like style
- Code de-duplication with formulas and labels

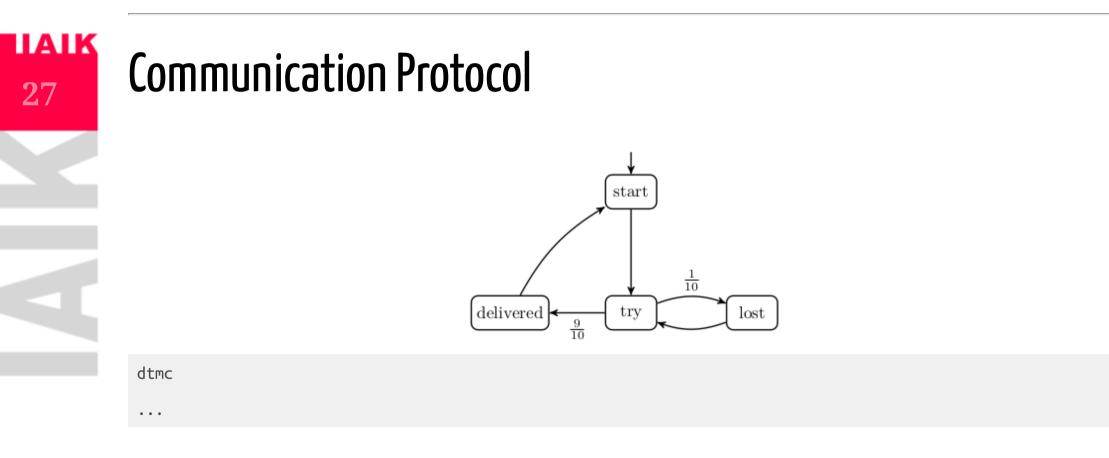
Other concepts include:

• Module Renaming

module Proc2 = Proc1 [idle2=idle1, ...] endmodule

- Synchronization between modules
- Partially Observable Models
- Continuous-time Models
- Process Algebra Operators

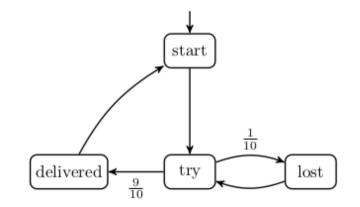




Live Coding!

28 Comm

Communication Protocol



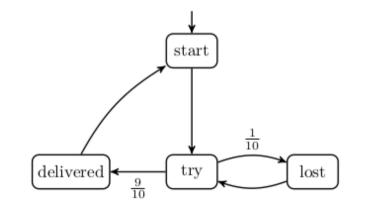
dtmc

```
label "success" = delivered=1;
label "lost" = lost=1;
```

```
module msg_delivery
    start: [0..1] init 1;
    try: [0..1] init 0;
    lost: [0..1] init 0;
    delivered: [0..1] init 0;
```

endmodule

Communication Protocol with Counting



dtmc

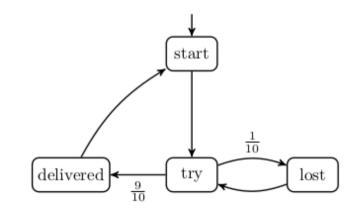
label "success" = delivered=1; label "lost" = lost=1;

. . .

module msg_delivery

endmodule

Communication Protocol with Counting



dtmc

label "success" = delivered=1; label "lost" = lost=1;

const int MAX_COUNT;

```
module msg_delivery
    start: [0..1] init 1;
    try: [0..1] init 0;
    lost: [0..1] init 0;
    delivered: [0..1] init 0;
    delivered_count: [0..MAX_COUNT] init 0;
    lost_count: [0..MAX_COUNT] init 0;
```

```
-> 1: (start'=0) & (try'=1);
[] start=1
[] try=1
                -> 0.1: (try'=0) & (lost'=1) +
                   0.9: (try'=0) & (delivered'=1);
                                             -> 1: (lost'=0) & (try'=1) & (lost count'=lost count+1);
[] lost=1
                & lost count<MAX COUNT
[] delivered=1 & delivered count<MAX COUNT -> 1: (delivered'=0) &
                                                   (start'=1) &
                                                   (delivered count'=delivered count+1) &
                                                   (lost count'=0);
                                             -> 1: (lost'=0) & (try'=1) & (lost count'=lost count);
[] lost=1
                & lost count=MAX COUNT
[] delivered=1 & delivered count=MAX COUNT
                                             -> 1: (delivered'=0) &
                                                   (start'=1) &
                                                   (delivered count'=delivered count) &
                                                   (lost count'=0);
```


endmodule

module pedestrian

// x and y coordinates, viewing direction in {left, right, north}

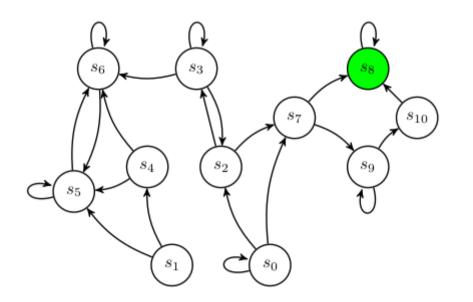
endmodule

IAIK **Probabilistic Reachability**

32

• We start with objectives similar to the ones discussed at the beginning of the semester:

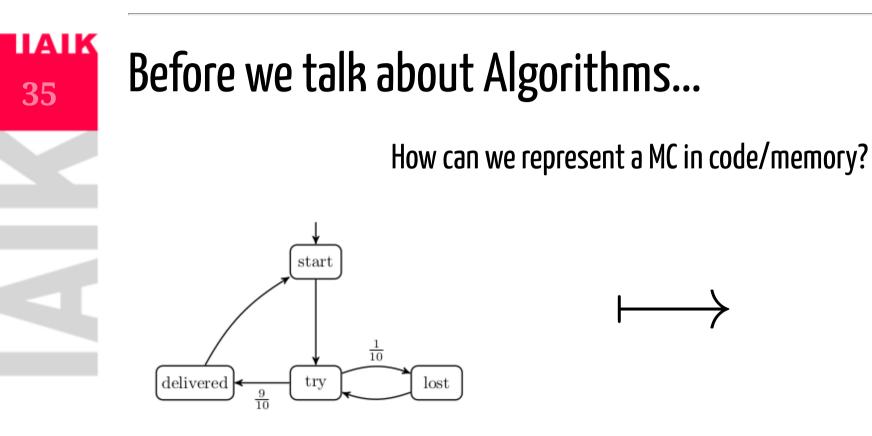
What is the probability that our system reaches its goal state?

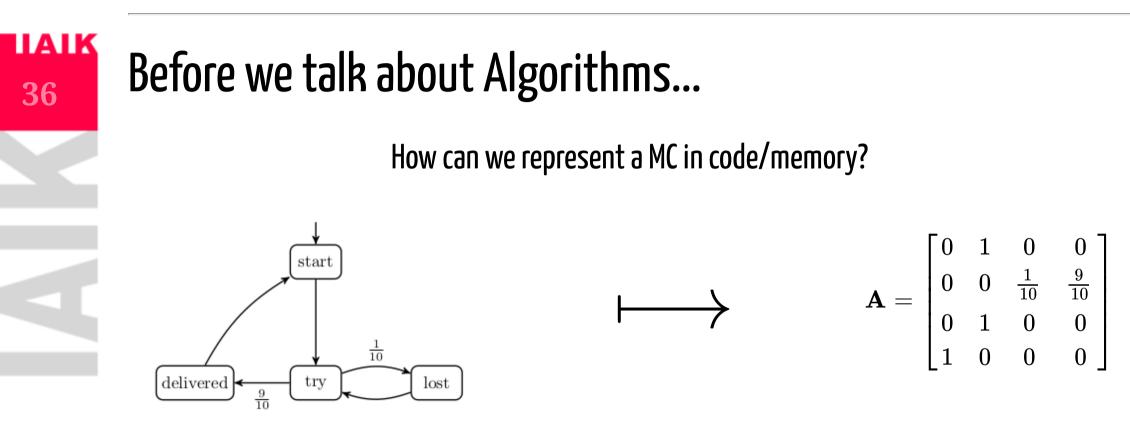


Before we talk about Algorithms...

Before we talk about Algorithms...

How can we represent a MC in code/memory?





IIAIK 37

Model Checking with Markov Chains

• Explicit CTL model checking allows *qualitative* model checking. • $\mathcal{M}, start \models \exists \mathbf{G} \neg delivered$?

Model Checking with Markov Chains

- Explicit CTL model checking allows *qualitative* model checking. • $\mathcal{M}, start \models \exists \mathbf{G} \neg delivered$?
- We want to do *quantitative* model checking.
 o How *likely* is the system to fail?

 $Pr(\mathcal{M},s\models \mathbf{F} \; s_{error})$

• Whats the *probability* of my message to arrive after infinitely many tries?

 $Pr(\mathcal{M}, s \models \mathbf{F} \text{ delivered})$

IAIK Paths

39

- A path $\pi = s_0 s_1 s_2 \ldots \in S^\omega$, s.t. $\mathbb{P}(s_i, s_{i+1}) > 0, orall i \geq 0$
- $Paths(\mathcal{M})$ is the set of all paths in \mathcal{M} and
- $Paths_{fin}(\mathcal{M})$ is the set of all finite path fragments in \mathcal{M} .

Events and Paths

In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

- Outcomes = $\{HH, HT, TH, TT\}$
- Events = $\{HH\}, \{HT\}, \{TH\}, \{TT\}$

We could, for example, be interested in the events where H is thrown first = $\{HH\}, \{HT\}$. What is a possible outcome in a specific Markov Chain \mathcal{M} ?

41

Events and Paths

In order to talk about probabilities of certain paths we need to briefly touch probability spaces.

- Outcomes = $\{HH, HT, TH, TT\}$
- Events = $\{HH\}, \{HT\}, \{TH\}, \{TT\}$

We could, for example, be interested in the events where H is thrown first = $\{HH\}, \{HT\}$. What is a possible outcome in a specific Markov Chain \mathcal{M} ?

- ightarrow an infinite path $\pi\in Paths(\mathcal{M})!$
 - Outcomes = $Paths(\mathcal{M})$
 - Events of interest are $\hat{\pi}_1, \hat{\pi}_2, \ldots \in Paths_{fin}(\mathcal{M})$ that satisfy our property
 - Formally we introduce the *cylinder set* of a prefix:

 $Cyl(\hat{\pi}_i) = \{\pi \in Paths(\mathcal{M}) \mid \hat{\pi}_i \in \operatorname{pref}(\pi)\}$

Events and Paths

What is a possible outcome in a specific Markov Chain \mathcal{M} ?

- ightarrow an infinite path $\pi \in Paths(\mathcal{M})!$
 - Outcomes = $Paths(\mathcal{M})$
 - Events of interest are $\hat{\pi}_1, \hat{\pi}_2, \ldots \in Paths_{fin}(\mathcal{M})$ that satisfy our property
 - Formally we introduce the *cylinder set* of a prefix:

$$Cyl(\hat{\pi}_i) = \{\pi \in Paths(\mathcal{M}) \mid \hat{\pi}_i \in \operatorname{pref}(\pi)\}$$

• The probability of one event of interest is then:

$$Pr(Cyl(\hat{\pi_i})) = Pr(Cyl(s_0s_1\dots s_n)) = \prod_{0 \leq i < n} \mathbb{P}(s_i, s_{i+1})$$

Reachability Probabilities

Let $B\subseteq S$ be a set of states. We are interested in

 $Pr(\mathcal{M}, s_0 \models \mathbf{F}B).$

Reachability Probabilities

Let $B\subseteq S$ be a set of states. We are interested in

 $Pr(\mathcal{M}, s_0 \models \mathbf{F}B).$

We can characterize all path fragments π that satisfy $\mathbf{F}B$ with the set

 $\Pi_{\mathbf{F}B} = Paths_{fin}(\mathcal{M}) \cap (S \setminus B)^*B$

All $\hat{\pi} \in \Pi_{\mathbf{F}B}$ are pairwise disjoint, hence:

$$Pr(\mathcal{M}, s_0 \models \mathbf{F}B) = \sum_{\hat{\pi} \in \Pi_{\mathbf{F}B}} Pr(Cyl(\hat{\pi}))$$

Computing $Pr(\mathcal{M}, s_0 \models C \mathbf{U} B)$

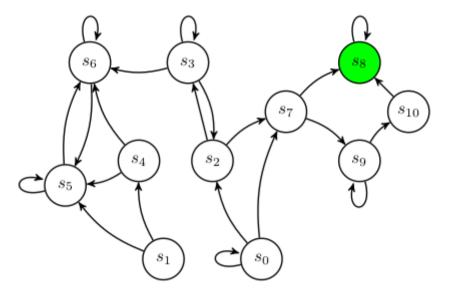
• We know that $\mathbf{F}B \equiv C \mathbf{U} B$, with C = S or simply 'true $\mathbf{U} B$ ' \circ Develop algorithm for arbitrary C

Computing $Pr(\mathcal{M}, s_0 \models C \mathbf{U} B)$

• We know that $\mathbf{F}B \equiv C \mathbf{U} B$, with C = S or simply 'true $\mathbf{U} B$ ' \circ Develop algorithm for arbitrary C

2-step algorithm:

- 1) Identify three disjoint subsets of S:
 - $S_{=1}$: The set of states with probability of 1 to reach B.
 - $S_{=0}$: The set of states with probability of 0 to reach B.
 - $S_?$: The set of states with probability $\in (0,1)$ to reach B.



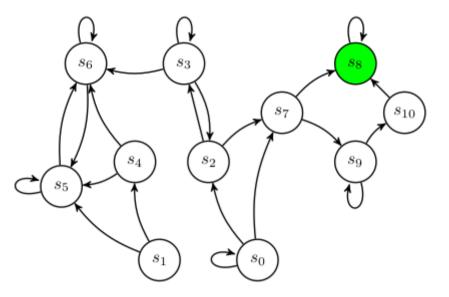
Computing $Pr(\mathcal{M}, s_0 \models C \mathbf{U} B)$

• We know that $\mathbf{F}B \equiv C \ \mathbf{U} \ B$, with C = S or simply 'true $\mathbf{U} \ B$ ' \circ Develop algorithm for arbitrary C

2-step algorithm:

- 1) Identify three disjoint subsets of *S*:
 - $S_{=1}$: The set of states with probability of 1 to reach B.
 - $S_{=0}$: The set of states with probability of 0 to reach B.
 - $S_?$: The set of states with probability $\in (0,1)$ to reach B.

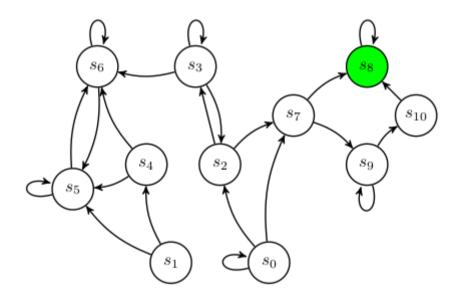
2) Compute the probabilities for all $s\in S_?$.



IIAIK 48

Computing $S_{=1}$ and $S_{=0}$

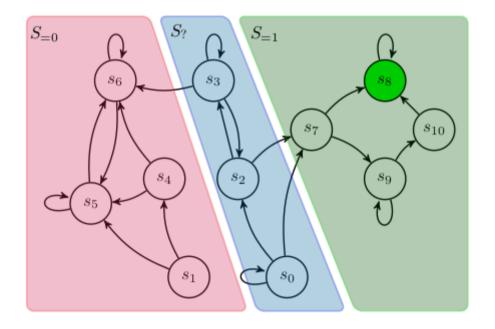
We can use DFS to compute these sets:

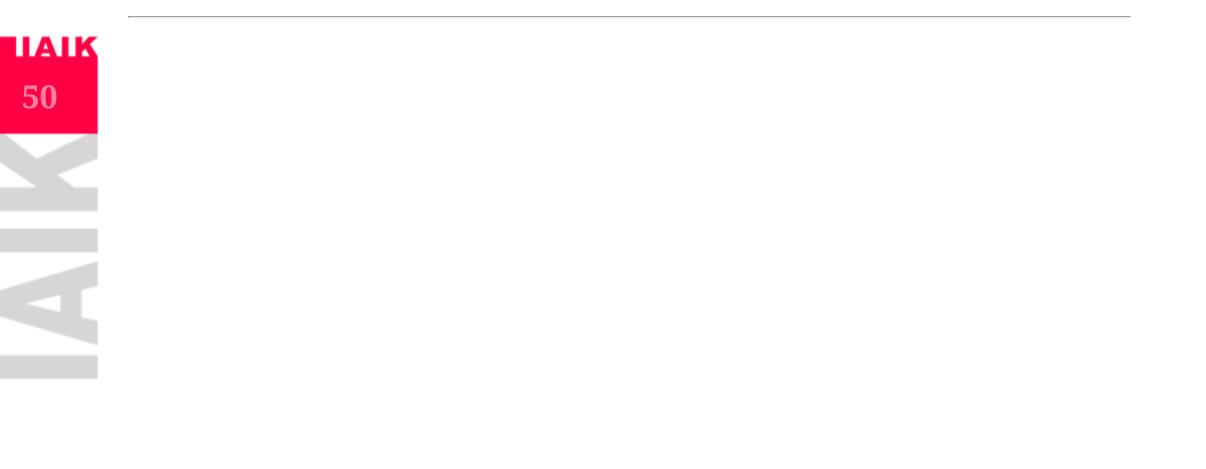


IIAIK 49

Computing $S_{=1}$ and $S_{=0}$

We can use DFS to compute these sets:

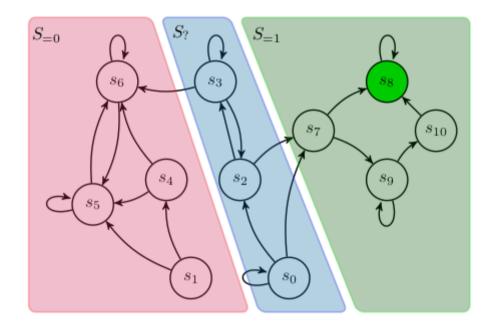




51 Con

Computing $S_?$

We are left with computing the probabilities for $s\in S_?$



Computing $S_?$

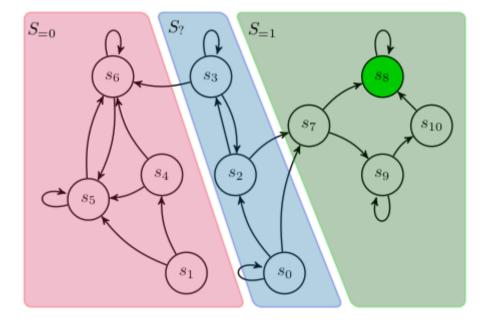
We are left with computing the probabilities for $s\in S_?$

Computing $S_?$

We are left with computing the probabilities for $s\in S_?$

- The probability to reach $S_{=1}$ in one step: $\sum_{u\in S_{=1}}\mathbb{P}(s,u)$
- and the probability to reach $S_{=1}$ via a path fragment $(s \ t \ \ldots \ u)$: $\sum_{t \in S_?} \mathbb{P}(s,t) \cdot x_t$
- Together

$$x_s = \sum_{t \in S_?} \mathbb{P}(s,t) \cdot x_t + \sum_{u \in S_{=1}} \mathbb{P}(s,u)$$



IIAIK 54

Computing $S_?$

Let us rewrite this into matrix notation:

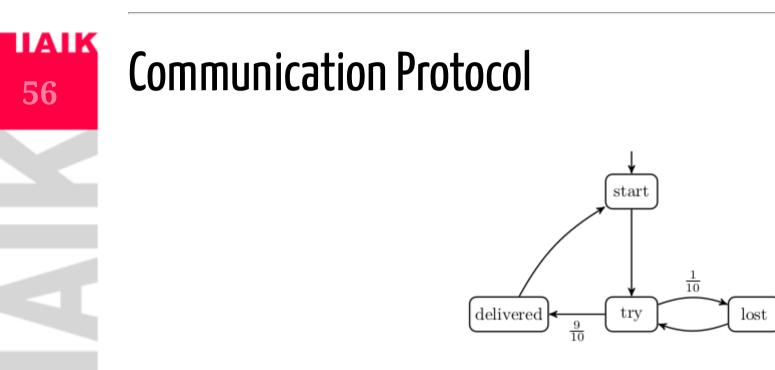
- $\bullet \ A_? = (\mathbb{P}(s,t))_{s,t\in S_?}$
- $\bullet \,\, x=(x_s)_{s\in S_?}$
- $b = (\sum_{u \in S_{=1}} \mathbb{P}(s,u))_{s \in S_?}$

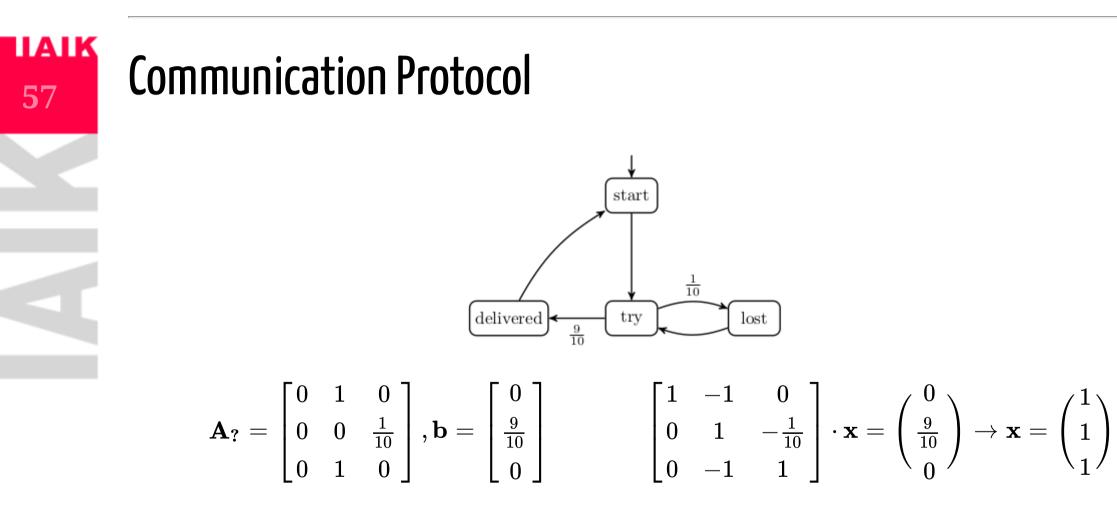
Computing $S_?$

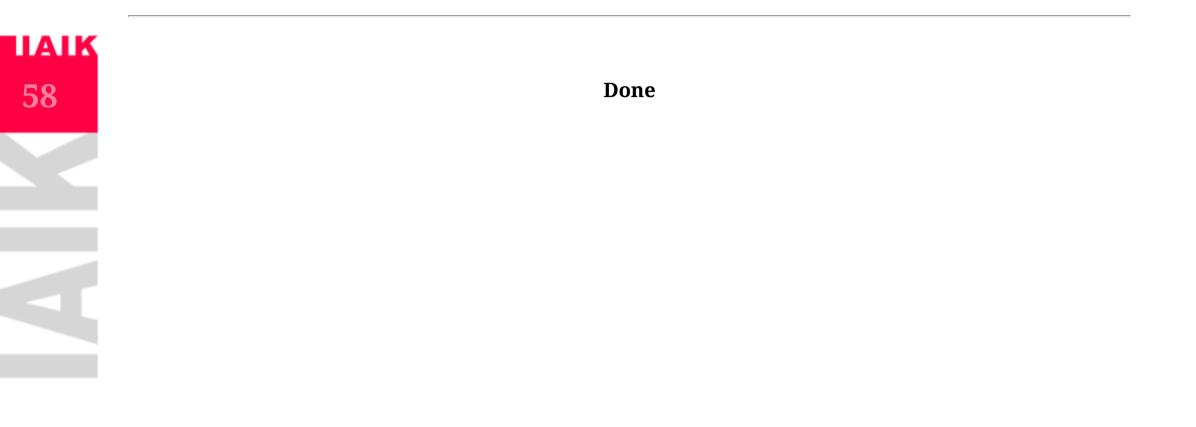
Let us rewrite this into matrix notation:

- $\bullet \ A_? = (\mathbb{P}(s,t))_{s,t\in S_?}$
- $\bullet \,\, x=(x_s)_{s\in S_?}$
- $b = (\sum_{u \in S_{=1}} \mathbb{P}(s,u))_{s \in S_?}$

$$x_s = \sum_{t \in S_?} \mathbb{P}(s,t) \cdot x_t + \sum_{u \in S_{=1}} \mathbb{P}(s,u) \rightsquigarrow x = A_? \cdot x + b = (I-A_?) \cdot x = b$$







Transient State Probabilities

We will consider a slightly different algorithm:

 $\mathbf{A}^n = \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdots \mathbf{A}$

contains the probability to be in state t after n steps in entry $\mathbf{A}^n(s,t)$.

We call

$$\Theta^{\mathcal{M}}_n(t) = \sum_{s \in S} \mathbf{A}^n(s,t)$$

the *transient state probability* for state *t*.

60

Transient State Probabilities

Let's consider $(\Theta^{\mathcal{M}}_n(t))_{s\in S}$, the vector of transient state probabilities for the nth step.

We can compute $Pr(\mathcal{M}, s_0 \models \mathbf{F}^{\leq n}B)$ in a modified Markov chain:

$$\mathcal{M}_B = (S, s_0, \mathbb{P}_B, AP, L)$$

where:

- $\mathbb{P}_B(s,t)=\mathbb{P}(s,t)$ if $s
 ot\in B$
- ullet $\mathbb{P}_B(s,s)=1$ if $s\in B$
- $\bullet \ \mathbb{P}_B(s,t) = 0 \text{ if } s \in B \text{ and } t \notin B$

i.e. all $s \in B$ become sinks and B cannot be left anymore.

Transient State Probabilities

- $\mathbb{P}_B(s,t)=\mathbb{P}(s,t)$ if $s
 ot\in B$
- $\bullet \ \mathbb{P}_B(s,s) = 1 \text{ if } s \in B$
- $\bullet \ \mathbb{P}_B(s,t)=0 \text{ if } s\in B \text{ and } t \notin B$

i.e. all $s \in B$ become sinks and B cannot be left anymore. We then have

$$Pr(\mathcal{M},s\models \mathbf{F}^{\leq n}B)=Pr(\mathcal{M}_B,s\models \mathbf{F}^{=n}B)$$

and therefore

$$Pr(\mathcal{M},s\models \mathbf{F}^{\leq n}B)=\sum_{t\in B}\Theta_n^{\mathcal{M}_B}(t)$$

62

Computing $Pr(\mathcal{M},s\models \mathbf{F}^{\leq n}B)$ via Transient State Probabilities

We have the following algorithm to compute $Pr(\mathcal{M},s\models \mathbf{F}^{\leq n}B)$:

- $\Theta_0^{\mathcal{M}}(t) = \mathbf{e}_i$, i.e. the unit vector with 1 at the *i*th position and 0 else.
- + For k=0 up to $n-1: \Theta_{k+1}^{\mathcal{M}}(t)= \mathbf{A} \cdot \Theta_{k}^{\mathcal{M}}(t)$
- $Pr(\mathcal{M},s\models \mathbf{F}^{\leq n}B)=\sum_{t\in B}\Theta_n^{\mathcal{M}_B}(t)$