

Graz University of Technology Institute for Applied Information Processing and Communications

Reactive Synthesis Bettina Könighofer

Model Checking SS24

May 13th 2024

One needs to do a lot of work:

Need to write the system + specification

How can we compute the Sytem?

- By solving a **Game**
- Played between the Environment-Player and the System-Player

Synthesis is a Game

LIAIK

4

Formal safety specification

Model of environment

ΙΙΑΙΚ Synthesis is a Game 9 inputs Player Player System outputs l_1 01 01 Sг What is the winning region for this example? S_4 i_2 **0**₂

Synthesis is a Game

What is the winning region for this example?

ΙΙΑΙΚ

10

Synthesis is a Game

What is the winning region for this example?

ΙΙΑΙΚ

11

ΙΙΑΙΚ Synthesis is a Game 12 inputs Player Player System outputs *S*₆ Sг What is the winning region for this example?

*S*₄

Synthesis is a Game

What is the winning region for this example?

ΙΙΑΙΚ

13

Synthesis is a Game

What is the winning region for this example?

System Player wins, if **o** is **never** visited

ΙΙΑΙΚ

14

Outline: Synthesis is a Game

- What is a game?
- Games on Graphs
- Solving Games

What characterizes a game?

Games are fun

Several players

At least 2

Games

Goal: win the game

Competitive:

If one wins, the other loses

You need a good strategy to win

Players can make **moves**

Moves must follow rules

Game has a state

State is changed by moves

Example: Tic-Tac-Toe

- 2 Players: and ×
- Players can make moves
 - o-player: place o
 - ×-player: place ×
- Rules for moves:
 - Players move in alternation
 - ... can only pick free slots
 - • •

ΙΔΙΚ

18

- Winning condition: connect 3
- Players play against each other

Strategy: Defines what should be done when

if:	● ×			and so on …
then:	● × ●	● ● × × ●	$ \begin{array}{c c} \bullet \times \bullet \\ \hline \times \bullet \\ \hline \times \bullet \\ \hline \end{array} $	and so on …

Terminology

- Solving a game = finding a strategy that wins any game
 - No matter how the opponent plays
- Such a strategy is called a Winning Strategy
 - Not always possible

ΙΙΑΙΚ

20

- Computation needs to think ahead
- Example: we are × and need to respond to

• Take the lower left corner \rightarrow dead in \leq 5 moves:

Secure & Correct Systems

ΙΑΙΚ Synthesis is a Game 21 2 Players: Spec Inputs Environment **System** Outputs Moves: Provide input values Provide output values Winning Condition: Violate the specification Satisfy the specification Strategy of System:

if:	state s=q ₇ input i=i ₄	s=q ₇ i=i ₅	s=q ₉ i=i ₁	and so on
then:	output o=o ₃ next state s=q ₉	0=0 ₄ S=q ₇	o=o ₁ s=q ₁	and so on

Outline: Synthesis is a Game

- What is a game?
 - Games on Graphs
 - Game solving requires some math...
 - Solving Games

Game = Graph + Winning condition

- Game = Graph + Winning condition
- Game graph: $G = (Q_0 \cup Q_1, E)$

Play ρ :

• Infinite sequence of states: $\rho = q_0 q_1 q_2 \dots \in Q^{\omega}$

Games on Graphs

- Game = Graph + Winning condition
- Game graph G = (Q, E):

ΙΙΑΙΚ

24

- Every state has an outgoing edge:
 - $\forall q \in Q : \exists q' \in Q : (q,q') \in E$
- Q is partitioned into Q₀ and Q₁:
 - $Q = Q_0 \cup Q_1$ with $Q_0 \cap Q_1 = \emptyset$
 - Player 0 picks a successor state in Q₀
 - Player 1 picks a successor state in Q₁

Game = Game Graph + Winning Condition

- Winning condition $\varphi: \mathbf{Q}^{\omega} \to \mathbb{B}$
- ρ is won by the Player 0 iff $\varphi(\rho) = T$
- ρ is won by the Player 1 iff $\varphi(\rho) = \bot$
- Types of winning conditions
 - Let $F \subseteq Q$ be a set of states

- 1. Reach F at least once
- 2. Stay in F forever
- 3. Reach F infinitely often

Safety Games
 Büchi Games
 Reachability Game

Game = Game Graph + Winning Condition

- Winning condition $\varphi : \mathbf{Q}^{\omega} \to \mathbb{B}$
- ρ is won by the Player 0 iff $\varphi(\rho) = T$
- ρ is won by the Player 1 iff $\varphi(\rho) = \bot$
- Types of winning conditions
 - Let $F \subseteq Q$ be a set of states
 - 1. Reach F at least once
 - 2. Stay in F forever
 - 3. Reach F infinitely often

2 Safety Games
 3 Büchi Games
 1 Reachability Game

Winning Strategy

- Positional Strategy:
 - $f^0: Q_0 \rightarrow Q$

ΙΙΑΙΚ

- A play $\rho = q_0 q_1 \dots$ follows positional strategy $f^0: Q_0 \rightarrow Q$ iff $q_{i+1} = f^0(q_i)$ for all $q_i \in Q_0$
- Winning Strategy:
 - Makes sure that P0 always wins

Winning Region

• W_0 is the set of states from which a winning strategy exists What is the winning region W_1 of P1?

IIAIK

Winning Region

IIAIK

W₀ is the set of states from which a winning strategy exists
What is the winning region W₁ of P1?

Winning Conditions: Reachability Games

- φ is defined using a set **F** of "target states"
- Player 0 wins a play $\rho = q_0 q_1 \dots$ iff **F** is visited
- $\varphi(\rho) \Leftrightarrow \exists i : q_i \in F$

IIAIK

Which plays are winning plays for P0?

Winning Conditions: Reachability Games

- φ is defined using a set ${\bf F}$ of "target states"
- Player 0 wins a play $\rho = q_0 q_1 \dots$ iff **F** is visited
- $\varphi(\rho) \Leftrightarrow \exists i : q_i \in F$

IIAIK

- φ is defined using a set **F** of "safe states"
- Player 0 wins a play $\rho = q_0 q_1 \dots$ iff it stays in F
- $\varphi(\rho) \Leftrightarrow \forall i : q_i \in F$

IIAIK

- φ is defined using a set **F** of "safe states"
- Player 0 wins a play $\rho = q_0 q_1 \dots$ iff it stays in F
- $\varphi(\rho) \Leftrightarrow \forall i : q_i \in F$

IIAIK

Which plays are winning plays for P0?

- φ is defined using a set **F** of "safe states"
- Player 0 wins a play $\rho = q_0 q_1 \dots$ iff it stays in F
- $\varphi(\rho) \Leftrightarrow \forall i : q_i \in F$

IIAIK

Winning Conditions: Büchi Games

 φ is defined using a set **F** of "accepting states"

IIAIK

Player 0 wins a play ρ iff **F** is visited infinitely often

Winning Conditions: Büchi Games

 φ is defined using a set **F** of "accepting states"

IIAIK

Player 0 wins a play ρ iff **F** is visited infinitely often

Winning Conditions: Büchi Games

 φ is defined using a set **F** of "accepting states"

Player 0 wins a play ρ iff **F** is visited infinitely often

• Inf(ρ): the states occurring infinitely often in ρ

• $\varphi(\rho) \Leftrightarrow Inf(\rho) \cap F \neq \emptyset$

ΙΙΑΙΚ

Outline: Synthesis is a Game

- What is a game?
- Games on Graphs
- Solving Games
 - Reachability
 - Safety

Compute the winning region of Player 0 for:

IIAIK

Compute the winning region of Player 0 for:

IIAIK

Compute the winning region of Player 0 for:

IIAIK

Compute the winning region of Player 0 for:

IIAIK

Compute the winning region of Player 0 for:

IIAIK

Compute the winning region of Player 0 for:

ΙΙΑΙΚ

Reachability Game Winning Strategy

LIAIK

Reachability Game Winning Strategy

LIAIK

Winning Strategy for Player 0

- $R_i(F) = \{q \in Q \mid \text{Player 0 can enforce to visit F in } \leq i \text{ steps} \}$
- $R_{\infty}(F) = W = \{q \in Q \mid \text{Player 0 can enforce to visit F}\}$

Reachability Game: Winning Region

- Force₁^{P0}(X) = { $q \in Q$ | Player 0 can force to reach X in exactly 1 step}
- Force₁^{P0}(X) = { $q \in Q_0 | \exists (q,q') \in E : q' \in X$ } \cup { $q \in Q_1 | \forall (q,q') \in E : q' \in X$ }

ΙΑΙΚ

48

- $R_i(F) = \{q \in Q \mid \text{Player 0 can enforce to visit F in } \le i \text{ steps} \}$
- $R_{\infty}(F) = W = \{q \in Q \mid \text{Player 0 can enforce to visit F}\}$
- Algorithm to compute W

- $R_i(F) = \{q \in Q \mid \text{Player 0 can enforce to visit F in } \leq i \text{ steps} \}$
- $R_{\infty}(F) = W = \{q \in Q \mid \text{Player 0 can enforce to visit F}\}$
- Algorithm to compute W

```
W {

R = {F}

while(R changes)

R = R \cup Force_1^{P0}(R)

return R

}
```


From
$$R_i \setminus R_{i-1}$$
 go to R_{i-1}

set F of "safe states"

LIAIK

Player 0 wins a play iff it stays in F

Safety Game

LIAIK

Compute the winning region of Player 0

• For the safety game with $F = \{q_1, q_2, q_3, q_4, q_5, q_6\}$

Safety Game

A X

ΙΙΑΙΚ

Compute the winning region of Player 0

Let's start with all safe states and see from which states we can fall out of the safe region.

• For the safety game with $F = \{q_1, q_2, q_3, q_4, q_5, q_6\}$

• Compute the winning region of Player 0 • q_7 q_6 f_9 f_9 f_9

 q_4

 q_5

If we ever get to q_6 we are in trouble \rightarrow q_6 is not in the winning region

• For the safety game with $F = \{q_1, q_2, q_3, q_4, q_5, q_6\}$

 \mathbf{q}_1

 \mathbf{q}_2

Exercise: Safety Game

Compute the winning region of Player 0

IIAIK

• For the safety game with $F = \{q_1, q_2, q_3, q_4, q_5, q_6\}$

Exercise: Safety Game

Compute the winning region of Player 0

ΙΙΑΙΚ

• For the safety game with $F = \{q_1, q_2, q_3, q_4, q_5, q_6\}$

- $S_i(X) = \{q \in Q \mid \text{Player 0 can enforce to stay in F for } \geq i \text{ steps} \}$
- $S_{\infty}(X) = W = \{q \in Q \mid Player \ 0 \ can enforce to stay in F forever\}$
- Algorithm to compute W

```
W {

S = F

while(S changes)

S = F \cap Force_1^{P0}(S)

return S

}
```


From W go to W

- In Q₀ states: pick one such edge
- In Q₁ states: Possible because W is constructed in such a way

- In which states exists a winning strategy for player 1?
- Which game is P1 playing?
- What is the strategy of P1?

- In which states exists a winning strategy for player 1?
 - $W_1 = Q \setminus W_0$
- Which game is P1 playing?
 - Reachability Game
- What is the strategy of P1?

Secure & Correct Systems

