Logic and Computability

Temporal Logic

S C I E N C E P A S S I O N T E C H N O L O G Y

Bettina Könighofer

bettina.koenighofer@iaik.tugraz.at

Stefan Pranger

stefan.pranger@iaik.tugraz.at

https://xkcd.com/1393/

² Warm Up – Modelling sentences

Translate the following sentences in propositional logic:

- "If there is coffee and cake, then the workshop is a success."
 - p... there is coffee, q... there is cake, r... the workshop is a success
 - $p \land q \rightarrow r$

³ Warm Up – Modelling sentences

Translate the following sentences in propositional logic:

- "If there is a request, the arbiter gives a grant in the **next time step**."
 - p... there is a request, q... arbiter gives a grant in the next time step

• $p \rightarrow q$

- "If there is a request, the arbiter gives a grant within the **next two time steps**."
 - p... there is a request, q... arbiter gives a grant within the next two time steps
 - $p \rightarrow q$
- "If there is a request, the arbiter gives a grant eventually."
 - p... there is a request, q... the arbiter gives a grant eventually
 - $p \rightarrow q$

⁴ Motivation

- We want to specify properties of hardware and software
 - E.g.: The system has to satisfy a property **eventually**.
 - A certain signal has to be high in the **next 5 time steps**.
 - Event A can only happen **10 minutes after** Event B.
- Temporal Logic allows reasoning over system's executions.
 - Introduce temporal operators, used additionally to logical operators
- Model Checking
 - Checks whether a model of a system meets a given specification
 - Specification typically expressed in temporal logic.

Outline

- Temporal Logic Formulas
 - Semantics of temporal operators
 - Intuitive explanation
 - Model natural language sentences via temporal logic formulas
- Evaluating System's Executions
 - Definition of Kripke structures
 - Checking execution paths w.r.t. temporal logic formulas
- Evaluating Systems
 - Semantics of path operators
 - Intuitive explanation
 - Checking Kripke structures w.r.t. temporal logic formulas

Learning Outcomes

After this lecture...

- students can explain the semantic of the temporal operators (X,G,F, and U) and the path operators (A and E).
- 2. students can model natural language sentences via temporal logic.
- 3. students can define Kripke structures.
- 4. students can check whether an execution trace satisfies a temporal logic formula.
- 5. students can check whether a Kripke structure satisfies a temporal logic formula.

Temporal Operators

Describe properties that hold along an execution path

- A state *s* satisfies the formula *Xp* if *p* is true in the next state.
- A state *s* satisfies the formula G*p* if *p* is true in every state along the trace.
- A state s satisfies the formula Fp if p is true in s or in a subsequent state along the trace.

⁸ Translate in Temporal Logic

Temporal Operators X... next G... globally F... eventually

- r... there is a request, g... arbiter gives grant
- "If there is a request, the arbiter gives a grant in the **next time step**." $G(r \rightarrow Xg)$
- "If there is a request, the arbiter gives a grant within the next 2 time steps."
 G(r → (Xg ∨ XXg))
- "If there is a request, the arbiter gives a grant **eventually**. "
 - $G(r \rightarrow Fg)$

⁹ Temporal Operators

Describe properties that hold along an execution path

Translate in Temporal Logic

Temporal Operators X... next G... globally F... eventually U... Until

- "The request is high until the arbiter gives a grant."
 - r... request is high, g... the system gives a grant
 - G(r **U** g)
- "The system is in the error state until the temperature is low or the system is turned off."
 - e... system is in error state, l... temperature is low, o... system is turned off
 - $G(e \mathbf{U} (l \lor o))$

Translate in Temporal Logic

Temporal Operators X... next G... globally F... eventually U... Until

- "The system gives a grant infinitely often."
 - g... the system gives a grant
 - **GF**(g)

11

- "The system sends a request finitely often."
 - r... system sends a request
 - **FG**(¬r)

Outline

- Temporal Logic Formulas
 - Semantics of temporal operators
 - Intuitive explanation
 - Model natural language sentences via temporal logic formulas
- Evaluating System's Executions
 - Definition of Kripke structures
 - Checking execution paths w.r.t. temporal logic formulas
- Evaluating Systems
 - Semantics of path operators
 - Intuitive explanation
 - Checking Kripke structures w.r.t. temporal logic formulas

¹³ Kripke Structures

- Transition system with labelling function
 - Assigns set of atomic propositions to each state

https://en.wikipedia.org/wiki/Kripke_structure_(model_checking)

¹⁴ Kripke Structures

- A Kripke Structure is a tuple $K = (S, S_0, R, L)$
 - Finite Set of States S
 - Set of Initial States $S_0 \subseteq S$
 - Transition Relation $R \subseteq S \times S$
 - Labeling function: $L : S \rightarrow 2^{AP}$

¹⁵ Kripke Structure - Example

How does the graph look like?

https://en.wikipedia.org/wiki/Kripke_structure_(model_checking)

¹⁶ Paths and Words over Kripke Structures

- Given a Kripke Structure $K = (S, S_0, R, L)$
- A path is a is a sequence of states $\rho = s_1, s_2, s_3 \dots$ s.t. for each i > 0, $R(s_i, s_{i+1})$ hold
- The *word* of a path ρ is a sequence of sets of atomic propositions $w = L(s_1), L(s_2), L(s_3), ...$

¹⁷ Paths and Words over Kripke Structures

Example:

- Given a path $\rho = s_1, s_2, s_1, s_2, s_3, s_3, s_3, \dots$
- What is the execution word w over ρ?
 - w = {p, q}, {q}, {p, q}, {q}, {p}, {p}, {p}, {p}, {p}, ...

¹⁸ Temporal Operators

Describe properties that hold along an execution path of a Kripke structure

• A state *s* satisfies the formula *pUq* if either q is true in *s* or *p* holds in every state (starting from s) until *q* holds.

Given:

- Trace $\rho = s_1 s_2 s_2 s_3 s_1 s_2 s_4 s_4 s_4 s_4 \dots$
- Temporal logic formula $\varphi = Xa \lor a U b$ Does the trace ρ satisfy the formula φ ?

Step 1: Compute the word w of ρ w = {} {a}, {a}, {b}, {}, {a}, {a, b}, {a, b} {a, b} ...

Step 2: Using w, evaluate φ over ρ

If the first state *s* of the trace ρ satisfies φ (i.e. $s \vDash \varphi$), we say that the trace satisfies φ (i.e., $\rho \vDash \varphi$).

Given:

- Word $w = \{\} \{a\}, \{a\}, \{b\}, \{\}, \{a\}, \{a, b\}^{\omega}$
- Formula $\varphi = Xa \lor a \ U \ b$
- Evaluate each subformula for each step (=state along the trace)

 ${a, b}^{\omega} \dots {a, b}$ infinitely many times

Step	0	1	2	3	4	5	ω
a	0	1	1	0	0	1	1
b	0	0	0	1	0	0	1
~ ~	1						
Xa	1	1	0	0	1	1	1
Xa aUb	1 0	1	0	0	1 0	1	1 1

Since the first state s of ρ satisfies φ ($s \vDash \varphi$), it holds that ρ satisfies φ ($\rho \vDash \varphi$).

Given:

- Trace $\rho = s_1 s_2 s_2 s_4^{\omega}$
- Temporal logic formula $\varphi = Ga \rightarrow Fb$
- Does the trace ρ satisfy the formula ϕ ?

Step 1: Compute the word w of ρ w = {} {a}, {a}, {a, b}^{ω}

Step 2: Using w, evaluate φ over ρ

If the first state *s* of the trace ρ satisfies φ (i.e. $s \vDash \varphi$), we say that the trace satisfies φ (i.e., $\rho \vDash \varphi$).

Given:

- Word $w = \{\} \{a\}, \{a\}, \{a, b\}^{\omega}$
- Formula $\varphi = Ga \rightarrow Fb$
- Does w satisfy φ ?

 ${a, b}^{\omega} \dots {a, b}$ infinitely many times

Step	0	1	2	ω
a	0	1	1	1
b	0	0	0	1
Ga	0	1	1	1
Ga Fb	0 1	1 1	1 1	1 1

Since the first state s of ρ satisfies φ ($s \models \varphi$), it holds that ρ satisfies φ ($\rho \models \varphi$).

Outline

- Temporal Logic Formulas
 - Semantics of temporal operators
 - Intuitive explanation
 - Model natural language sentences via temporal logic formulas
- Evaluating System's Executions
 - Definition of Kripke structures
 - Checking execution paths w.r.t. temporal logic formulas

Evaluating Systems

- Semantics of path operators
 - Intuitive explanation
- Checking Kripke structures w.r.t. temporal logic formulas

²⁴ Evaluating Systems

- Check whether a Kripke structure K satisfies a formula ϕ
- K satisfies φ , if all initial states of $s_0 \in S_0$ satisfy φ
 - $K \vDash \varphi$ if and only if $\forall s \in S_0 : s \vDash \varphi$
- We need path quantifiers to reason about execution paths of systems.

²⁵ Computation Tree Logic – CTL*

- Extends propositional logic with
 - Temporal Operators, and
 - Path Quantifiers
 - A for all paths starting from s have property $oldsymbol{\phi}$
 - E there exists a path starting from s have property $oldsymbol{arphi}$

²⁶ Computation Tree Logic – CTL*

- Extends propositional logic with
 - Temporal Operators, and
 - Path Quantifiers

Kripke structure K satisfies a CTL* formula φ, if all its initial states s₀ ∈ S₀ satisfy φ.
K ⊨ φ iff ∀s₀ ∈ S₀: s₀ ⊨ φ

²⁷ Evaluating Kripke Structures – Example 1

• Does the Kripke structure K satisfy $\varphi_1 = EXX(a \wedge b)$?

²⁸ Evaluating Kripke Structures – Example 1

- Does the Kripke structure *K* one of the following formulas?
 - $\varphi_1 = EXp$
 - $\varphi_2 = AXp$

²⁹ Example – Mutual Exclusion

- Two processes P₁ and P₂ with a joint semaphor signal sem
- Each process P_i has a variable v_i describing its state:
 - $v_i = N$ Non-critical
 - $v_i = T$ Trying
 - $v_i = C$ Critical

```
    Each process runs the following program
while (true) {
        if (v<sub>i</sub> == N) v<sub>i</sub> = T;
        else if (v<sub>i</sub> == T && sem) { v<sub>i</sub> = C; sem = 0; }
        else if (v<sub>i</sub> == C) { v<sub>i</sub> = N; sem = 1; }
        }
```

³⁰ Example – Mutual Exclusion

³¹ Example – Mutual Exclusion

Simpler Representation

³² Example – Mutual Exclusion

- Does it hold that $K \vDash \varphi$?
 - Property 1: $\varphi := \mathbf{AG} \neg (C_1 \land C_2)$

³³ Example – Mutual Exclusion

- Does it hold that $K \models \varphi$?
 - Property 2: $\varphi := \mathbf{AG} \neg (\mathsf{T}_1 \land \mathsf{T}_2)$

³⁴ Example – Mutual Exclusion

- Does it hold that $K \models \varphi$?
 - Property 3: $\varphi := \mathbf{EG} \neg (\mathsf{T}_1 \land \mathsf{T}_2)$

³⁵ Example – Mutual Exclusion

- Does it hold that $K \vDash \varphi$?
 - Property 4: $\varphi := \mathbf{AG} \mathbf{EF} (T_1)$
- No matter where you are it is always possible to reach the state labeled with T_1 .

³⁶ Example – Mutual Exclusion

- Does it hold that $K \vDash \varphi$?
 - Property 4: $\varphi := \mathbf{AG} \mathbf{EF} (T_1)$

https://xkcd.com/1033/