

Mobile Network Security

Mobile Security 2024

Florian Draschbacher florian.draschbacher@iaik.tugraz.at

Outline

• Background

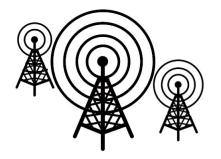
- Evolution of cellular networks
- Architecture
- Security
- Attacks
 - Active, Passive
 - Built-in backdoors

• Protection Mechanisms

– Are you protected? How to defend yourself?

Introduction

- So far we concentrated on the smarts of smartphones
 - What about the phone part?
- How do phone calls, messaging and Internet over cellular networks work?
 - What components are involved?
 - What protocols and technologies do they use?
- What about the security of these technologies?
 - Who can intercept communication?
 - What are the privacy consequences of being reachable on-the-go?


Introduction

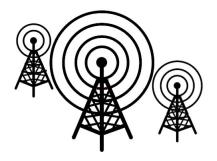
Goals

- Protect business models and operational services
- Privacy for user identity, data confidentiality
- Regulatory issues \rightarrow legal interception

How to apply security?

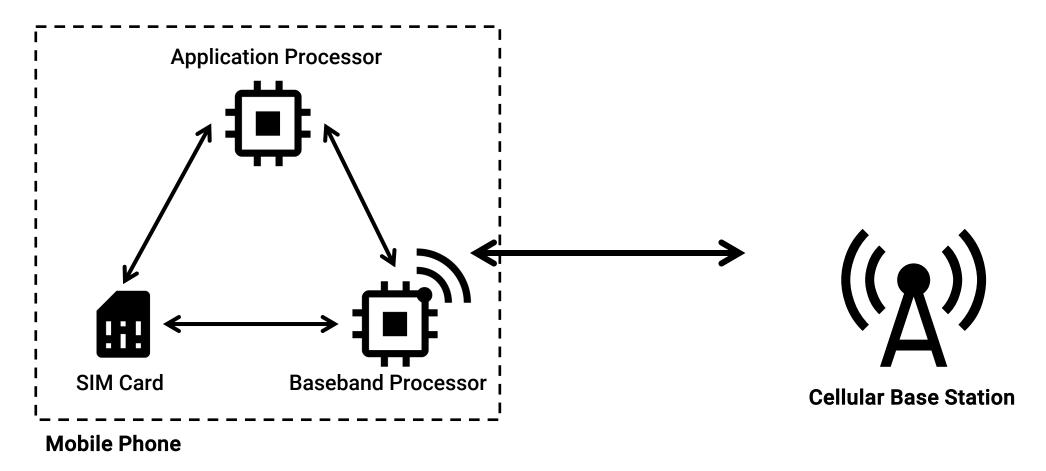
- Minimize number of security threats
- Remember: Cost efficiency & high performance (load balancing)
- Interoperability with legacy systems (GSM <-> UMTS)
- Practical issues, e.g. end-to-end *vs.* hop-by-hop security?

Introduction


Technical objectives

- Authentication of user and network
- Confidentiality
 - User data & signaling data
 - User & device identity
 - User location
- Signaling data integrity
- User untraceability(?)

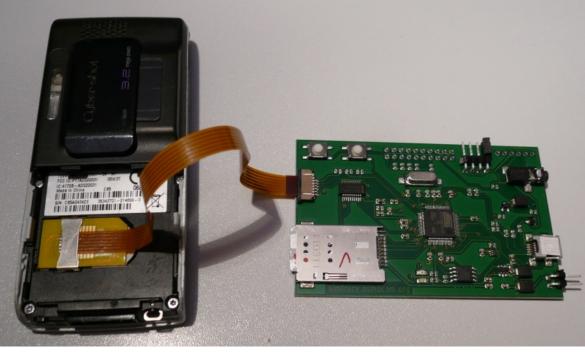
 \rightarrow Need strong algorithms for encryption and integrity checking,


 \rightarrow Need algorithm extensibility for future-proofness

Mobile Equipment (= Mobile Network Client)

Mobile Equipment Architecture

Subscriber Identification Module (SIM) Card


aka. "Universal Integrated Circuit Card (UICC)"

- A smart card, containing microcontroller and (flash) memory
- Authenticates a client in the cellular network
 - Symmetric authentication key K_i
- Contains unique identifiers
 - IMSI: International Mobile Subscriber Identifier
 - ICCID: Integrated Circuit Card Identifier
- Also: Java programs, contacts, preferred roaming networks, ...

SIM Communication with Mobile Equipment

- ISO-standardised protocol commonly referred to as APDU
 - Application Protocol Data Unit
- May be intercepted using special hardware and software tools

sm_sim										Exp	ression
Time	Source Destination	Protocol L	enath Info								
	. 127 127.0.0.1		65 ISO/IEC 7	7816-4 VERI	FY CHV CHV	=1 : 63c3					
	. 127 127.0.0.1		65 ISO/IEC 7				3				
	. 127 127.0.0.1		65 ISO/IEC 7								
	. 127 127.0.0.1		65 ISO/IEC 7				ca				
	. 127 127.0.0.1		67 ISO/IEC 7								
	. 127 127.0.0.1		90 ISO/IEC 7								
	. 127 127.0.0.1		77 ISO/IEC 7			fset=0					
369 45.6.	. 127 127.0.0.1	GSM SIM	67 ISO/IEC 7	7816-4 SELE	CT File EF	.EST					
370 45.6	. 127 127.0.0.1	GSM SIM	90 ISO/IEC 7	/816-4 GET	RESPONSE						
371 45.6.	. 127 127.0.0.1	GSM SIM	68 ISO/IEC 7	7816-4 READ	BINARY OF	fset=0					
372 45.6	. 127 127.0.0.1	GSM SIM	67 ISO/IEC 7	/816-4 SELE	CT File EF	.IMSI					
373 45.9	. 127 127.0.0.1	GSM SIM	98 ISO/IEC 7	/816-4 GET	RESPONSE						
374 45.9	. 127 127.0.0.1	GSM SIM	74 ISO/IEC 7	/816-4 READ	BINARY OF	fset=0					
375 45.9	. 127 127.0.0.1	GSM SIM	67 ISO/IEC	/816-4 SELE	CT File EF	.DCK : Wron	ng parameters	: File not	found		
	. 127 127.0.0.1		69 ISO/IEC 7				5 1				
377 45.9	. 127 127.0.0.1	GSM SIM	98 ISO/IEC 7	/816-4 GET	RESPONSE						
378 45.9	. 127 127.0.0.1	GSM SIM	69 ISO/IEC	/816-4 SELE	CT /ADF/EF	.CNL : Wron	ng parameters	: File not	found		
379 45.9	. 127 127.0.0.1	GSM SIM	69 ISO/IEC 7	/816-4 SELE	CT /ADF/EF	.MSISDN					
380 45.9	. 127 127.0.0.1	GSM SIM	92 ISO/IEC 7	/816-4 GET 1	RESPONSE						
rame 496	6: 71 bytes on wire	e (568 bits)	. 71 bytes ca	stured (568	bits) on	interface (9				
	II, Src: 00:00:00							(00)			
	Protocol Version 4	_									
	agram Protocol, Sro										
SM SIM 1											
					E.						
	9 25 f0 40 00 40 1 1 89 41 12 79 00 2) .% .8						
	0 00 00 00 00 00 00 00 00										
	f 3a 4f 3a 61 24			:0:a\$							
				_							

Source: <u>osmocom.org</u>

📶 📕 🧟 💿 📑 🖹 🖹 🌀 🔍 😋 🗇 🙂 号 🥃 📃 🖽 🖃 🚹

gsm_sim							$\times \rightarrow$	 Expression
o. Time	Source Destination	Protocol Le	ngth Info					
362 45.6	. 127 127.0.0.1	GSM SIM	65 ISO/IEC 781	L6-4 VERIFY CHV CHV=1	63c3	Card Holder Verificat	ion = PIN Code	
363 45.6	. 127 127.0.0.1	GSM SIM	65 ISO/IEC 781	L6-4 VERIFY CHV CHV=12	9 : 63c3			
364 45.6	127 127.0.0.1		65 ISO/IEC 781	L6-4 UNBLOCK CHV CHV=1	: 63ca			
	127 127.0.0.1			L6-4 UNBLOCK CHV CHV=1				
	127 127.0.0.1			L6-4 SELECT File EF.SS	ſ			
	127 127.0.0.1			L6-4 GET RESPONSE				
	. 127 127.0.0.1			L6-4 READ BINARY Offse				
	127 127.0.0.1			L6-4 SELECT File EF.ES				
	127 127.0.0.1 127 127.0.0.1			L6-4 GET RESPONSE L6-4 READ BINARY Offse	0			
	. 127 127.0.0.1			16-4 SELECT File EF.IM				
	. 127 127.0.0.1			L6-4 GET RESPONSE	,	Read IM	ISI	
	. 127 127.0.0.1			16-4 READ BINARY OTTSE	=0			
	. 127 127.0.0.1					rameters: File not fou	nd	
	127 127.0.0.1			L6-4 SELECT /ADF/EF.IM				
377 45.9	. 127 127.0.0.1	GSM SIM	98 ISO/IEC 781	L6-4 GET RESPONSE				
378 45.9	. 127 127.0.0.1	GSM SIM	69 ISO/IEC 781	6-4 SELECT /ADF/EF.CN	. : Wrong par	rameters: File not four	nd	
379 45.9	127 127.0.0.1	GSM SIM	69 ISO/IEC 781	L6-4 SELECT /ADF/EF.MS	ISDN			
380 45.9	. 127 127.0.0.1	GSM SIM	92 ISO/IEC 781	L6-4 GET RESPONSE				
Ethernet Internet	II, Src: 00:00:00 Protocol Version agram Protocol, Sr	_00:00:00 (00 4, Src: 127.0	0:00:00:00:00:00 0.0.1, Dst: 127.			90:00:00:00)		
000 00 0	0 00 00 00 00 00 00	00 00 00 00	00 08 00 45 00	E.				
	9 25 f0 40 00 40 1			.9%.@.@				
	1 89 41 12 79 00 2 0 00 00 00 00 00 0			A.y.% .8				
	f 3a 4f 3a 61 24	00 00 00	4 00 04 00 71	:0:a\$				
🔰 🗹 wires	hark lo 201804241734	58 AaudwO				Packets: 534 · Displayed: 2	286 (53.6%)	Profile: Def
	enshot LiveOverflow							

Authentication Process

- The K_i in SIM card is issued by network operator, stored in their database
- 1. Mobile Equipment (ME) passes PIN to SIM card to get IMSI
- 2. ME passes IMSI to network operator
- 3. Network operator generates random nonce RAND
- 4. Network operator computes SRES_1 = $A3_{Ki}(RAND)$ and $K_C = A8_{Ki}(RAND)$
- 5. Network operator sends RAND to ME
- 6. ME passes RAND to SIM card, which computes SRES_2 and K_c
- 7. ME sends SRES_2 to network operator
- 8. If SRES_1 equals SRES_2, the authentication succeeded
- 9. Subsequent communication will be encrypted using K_C

SIM Cloning

- The authentication process was designed so that K_i never leaves the SIM card
 - Legitimate SIM card required to access mobile network
- However, the COMP128 implementation of the A3/A8 algorithms vulnerable
 - Designed in secrecy, but reverse-engineered in 1998, attacks soon after
- K_i could be calculated from a series of A3/A8 challenges to SIM card
 20k challenges (brute force: 2^128)
- K_i and IMSI can be written into blank SIM cards to create SIM clone
- Modern mobile networks use improved COMP128, SIMs limit challenges

IAI

SIM Cloning

- Cloned SIMs can authenticate to the network as the legitimate SIM card
 - Intercept or inject communication on behalf of original SIM holder
- Extraction from SIM cards is not the only way to obtain K_i
 - Access network operator database
 - Infiltrate SIM card manufacturer

TE

The NSA Reportedly Stole Millions Of SIM Encryption Keys To Gather Private Data

Alex Wilhelm, Sarah Buhr / 2:39 AM GMT+1 • February 20, 2015

The American National Security Agency (NSA), and the British Government Communications Headquarters (GCHQ), similar clandestine intelligence agencies, stole SIM card encryption keys from a manufacturer, allowing the groups to decrypt global cellular communications data.

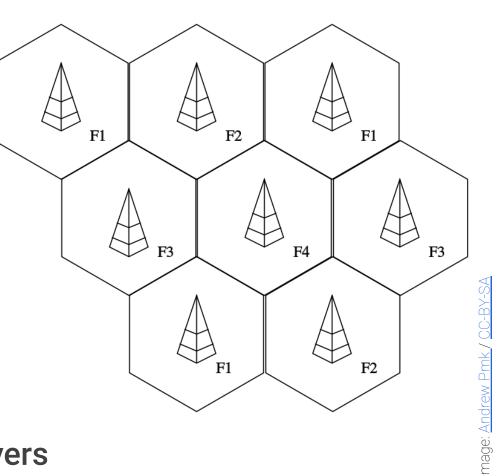
Embedded SIM (eSIM)

- Originally, SIM was the term for the hardware (card) and its software
- Later versions denoted the card as Universal Integrated Circuit Card (UICC)
 - Running SIM application
- Further abstraction: Embedded SIM
 - eUICC: Chip statically mounted to Mobile Equipment
 - eSIM: Carrier profile installed onto eUICC
- Every eUICC is uniquely identified using eSIM ID (EID)
- Carrier profiles are provisioned encrypted
 - May only be decrypted inside eUICC

SIM Swap Attacks / SIM Jacking

- A mobile numbers is not fixed to a SIM card
 - Mobile Number Portability (MNP) enables carrier migration

Can be abused by attackers to gain control over a mobile number:


- 1. Collect personal information about victim
- 2. Initiate number migration to attacker's SIM through victim's carrier
- 3. Prove identity through stolen personal information
- 4. After migration, the victim loses control over the mobile number
- SMS is still commonly used for Two Factor Authentication!
- This attack has been used for high-profile hacks and is on the rise!

Mobile Phone Networks

Modern Mobile Phone Networks

- Distributed over land areas called "cells"
 - "Cellular network"
- Every cell is covered by >= 1 base stations
 - More depending on needed capacity
- Cells use different radio frequencies
 - Prevents interference of neighbouring cells
- Base stations are interconnected in multiple layers
 - And linked to landline network and Internet

Cellular Network Generations

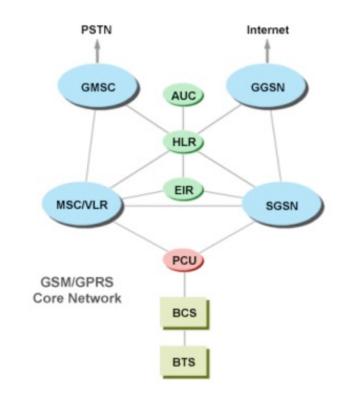
- Cellular Network technology is constantly advancing
- New technology generations are rolled out roughly every 10 years
 - First generation: 1980s
 - Currently: Roll-out of 5G in progess
- Generation: Improved technology that is incompatible with previous one
 - Still: Mobile Equipment is usually backwards-compatible
- The exact technology used for a generation depends on the region!
 - E.g. 3G in America (CDMA2000) is incompatible with 3G (UMTS) in Europe

General Network Structure

- A network consists of functionality in multiple subsystems
 - Base Station Subsystem (BSS): Base stations for radio link
 - Core Network / Network Switching Subsystem: Managing calls
 - Data Core Network (eg. GPRS Core Network): Managing data transfers
- The radio link determines the physical data transfer protocol
 - Typically changes between different generations of cellular networks
- Rest of the infrastructure helps locate phones
 - Establishing calls, delivering data, ... despite phone moving between cells
 - May be shared between different network generations

Cellular Network Technologies (Europe)

- 1. Generation:
 - Analog audio transmission
 - Data only through a modem (modulator-demodulator)
- 2. Generation: GSM
 - Encrypted digital audio between phone and base station
 - Later added GPRS and EDGE for packet-switched data communications
- 3. Generation to 5. Generation: UMTS, LTE, 5G
 - Faster data communications
 - Improved bandwidth



2G Networks

- Commerical launch in 1992
- User authentication based on per-subscriber secret key in SIM
- TDMA-based, circuit switching
 - "Time Division Multiple Access"
 - Share same frequency channel for multiple users by dividing signal into different time slots

Versions

- 2.5G: GPRS (added in 2000)
 - Theoretical speed: 171 kbps down, 40 kbps up
- 2.7G: EDGE
 - Theoretical speed: 384 kbps down, 108 kbps up

3G Networks

Features

- Same core network as 2G
 - Still circuit-switched (GSM) & packet-switched hybrid (UMTS)
- No integrity protection (like LTE) \rightarrow Downgrade attacks possible
- Almighty base station \rightarrow Decides if, when, and how to authenticate / encrypt

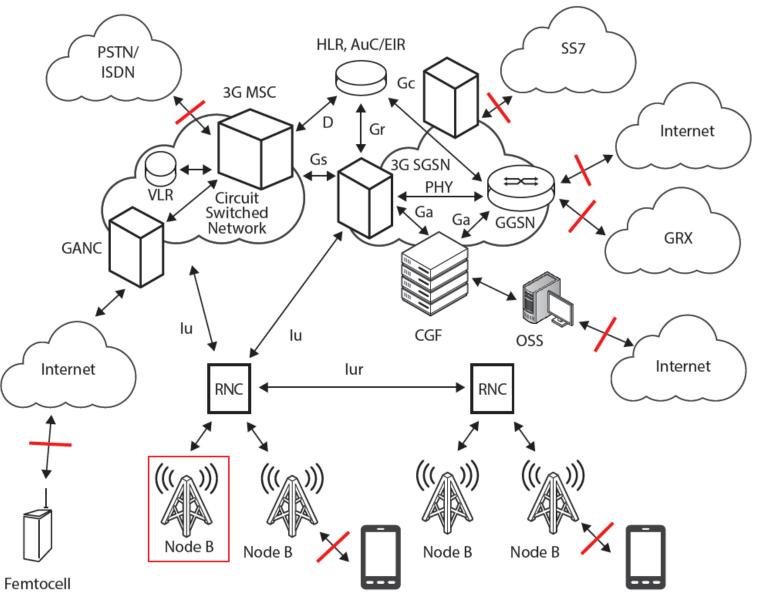
IAIK

Versions

UMTS max. 2 Mbps down, 384 kbps up • 3G max. 14.4 Mbps down, 2 Mbps up • 3.5G **HSDPA HSUPA** max. 14.4 Mbps down, 5.76 Mbps up • 3.6G • 3.75G max. 21 Mbps down, 5.8 Mbps up HSPA+ • 3.8G **HSPA+** Enhanced max. 84 Mbps down, 20 Mbps up LTE (pre 4G!) max. 100 Mbps down, 50 Mbps up 3.9G

Evolution: 4G Networks

Currently: LTE Advanced (LTE-A) max. 1 Gbit down, 500 Mbit up


Features

- Only IP-based communication (also voice \rightarrow VoLTE), no more circuit switching
 - Fallback support for circuit-switched calls
- Mutual authentication between base station & mobiles
- Mandatory integrity protection for signaling messages
- IMEI ciphered to protect user equipment privacy
- New algorithms and extensibility
 - Word-oriented stream cipher (128 bit key): SNOW 3G
 - Integrity, confidentiality: AES-GCM

3G/4G Network Structure

Legend

• Node B

UMTS Base Station

• RNC

Radio Network Controller

• SGSN

Serving GPRS Support Node

• GGSN

Gateway GPRS Support Node

• MSC

Mobile Switching Center

Source: https://goo.gl/V98GB5

3G/4G Network Workflow

1) Node B

- Minimum functionality base station in UMTS networks
- Typically located near the antenna (but not necessarily)
- Controlled by RNC using a "lub" interface

2) RNC

- Main task: Manage connected Node Bs and radio resources
 - Channels, signal strength (power), cell handover
- Can build Mesh networks with other RNCs

3a) Speech: MSC (Mobile Switching Centre) → routing voice / SMS
3b) Data: SGSN → routing data

GSM equivalent: Base Transceiver Station (BTS)

3G/4G Network Components

SGSN

- Data delivery from/to mobile station in defined geographical service area
- (*De-*)tunnel packets from/to GGSN (*Downlink*, Uplink)
- Handover → phone moves from Routing Area A to Routing area B
- User data billing

GGSN

- Inter-networking between internal network and external packet switched networks (Internet)
- Keeps your connections alive while moving around
- User authentication, IP pool management, QoS

🔯 Zugangspunkt bear	beiten
Name A1	>
APN data@bob.at	>
Proxy Nicht festgelegt	(
Port Nicht festgelegt	>
Benutzername ppp@A1plus.at	(
Passwort	(
Server Nicht festgelegt	(\mathbf{b})

GSM Encryption

How? Stream ciphers to encrypt traffic on air interface

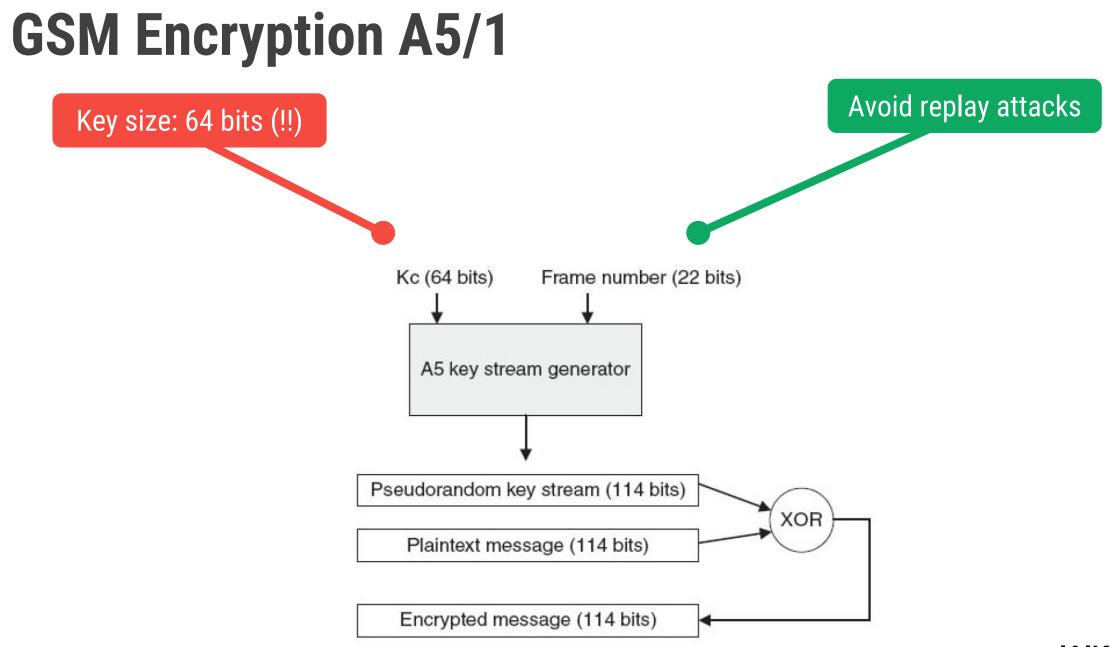
Set of algorithms

• A5/0: Unencrypted, no cracking needed ©

 \rightarrow broken (and partly banned, e.g. by T-Mobile Austria)

• A5/1: Combination of 3 linear feedback shift registers (LFSRs)

ightarrow 64-bit key, broken using rainbow tables in 2009


• A5/2: export version of A5/1

 \rightarrow broken in 1999, banned since 2006

- A5/3 + A5/4: Backport of Kasumi UMTS cipher (current standard)
 - 128-bit key, 64-bit input / output

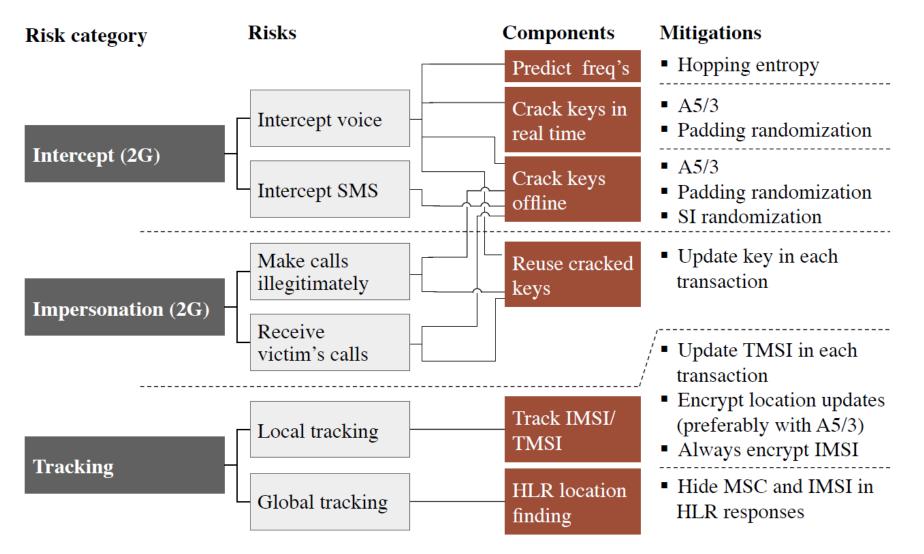
(Recent) Attacks

Scenarios

Intercept

- Adversary records calls & SMS
 - Decryption in real time or batch process (after recording)

Impersonation


- Calls or SMS spoofed
- Received using stolen mobile identity

Tracking

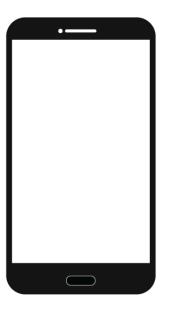
- Tracing mobile subscribers
 - a) using Internet-leaked information
 - b) locally by repeated TMSI pagings

Scenarios & Mitigations

Source: https://goo.gl/15pRhE

Active Attack: Fake Base Stations

= IMSI Catchers

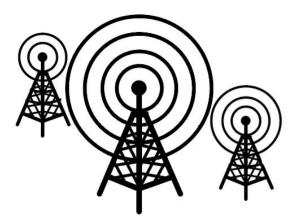

- Partially exploit weaknesses in GSM & 3G networks
- Used for
 - Tracking users (IMEI, IMSI, location)
 - Eavesdropping calls, data, SMS, etc.
 - Man-in-the-Middle
 - Attack phone using operator system messages,
 - e.g. Management Interface, re-program APN, HTTP proxy, SMS/WAP server, ...
 - Attack SIM or phone baseband
 - Geo-targeting ads (SMS)
 - Intercept TAN, mobile phone authentication, ...

Tracking, Call & Data interception

How does it work?

Advertise base station on beacon channel

Phone sends IMSI / TMSI (sort of secret)


MCC: Mobile Country Code (232 for .at)

MNC: Mobile Network Code

• Country-specific tuple with MCC, e.g. 232-01 for a1.net

 \rightarrow Phones will connect to *any* base station with spoofed MNC/MCC

- If you claim it, they will come because strongest signal wins ③
- Crypto optional (until 4G) and set by base station!

Terminal 1	- • 😣		Gr-gsm Live	mon		
Fichier Édition Affichage Rechercher Terminal Aide						
<pre>\$ sudo python simple_IMSI-catcher.py WARNING: No route found for IPv6 destination :: (no default route?) cpt ; IMSI ; country ; brand ; operator 1 ; 234 20 730143 ; Guernsey (United Kingdom) ; 3 ; Hutchison 3G U</pre>	IK 1 + d	PPM Offse		0		
2 ; 208 20 154308 ; France ; Bouygues ; Bouygues Telecom 3 ; 208 20 029666 ; France ; Bouygues ; Bouygues Telecom 4 ; 208 20 085162 ; France ; Bouygues ; Bouygues Telecom	K Etu	Gain		30,000		
5 ; 208 20 031381 ; France ; Bouygues ; Bouygues Telecom 6 ; 208 20 031233 ; France ; Bouygues ; Bouygues Telecom 7 ; 208 20 031343 ; France ; Bouygues ; Bouygues Telecom 8 ; 208 20 171286 ; France ; Bouygues ; Bouygues Telecom		Frequency		93(400000	
9 ; 208 20 090096 ; France ; Bouygues ; Bouygues Telecom 10 ; 208 20 100817 ; France ; Bouygues ; Bouygues Telecom 11 ; 208 20 144546 ; France ; Bouygues ; Bouygues Telecom 12 ; 208 20 220088 ; France ; Bouygues ; Bouygues Telecom 13 ; 208 20 171268 ; France ; Bouygues ; Bouygues Telecom 14 ; 208 20 154457 ; France ; Bouygues ; Bouygues Telecom 15 ; 208 20 144758 ; France ; Bouygues ; Bouygues Telecom 16 ; 208 20 031231 ; France ; Bouygues ; Bouygues Telecom 17 ; 208 20 031231 ; France ; Bouygues ; Bouygues Telecom 18 ; 208 20 171275 ; France ; Bouygues ; Bouygues Telecom 19 ; 208 20 031317 ; France ; Bouygues ; Bouygues Telecom 20 ; 208 20 154456 ; France ; Bouygues ; Bouygues Telecom 21 ; 208 20 144857 ; France ; Bouygues ; Bouygues Telecom 22 ; 208 20 031261 ; France ; Bouygues ; Bouygues Telecom 23 ; 208 20 144819 ; France ; Bouygues ; Bouygues Telecom 24 ; 208 20 100230 ; France ; Bouygues ; Bouygues Telecom		-0 - -20 - -40 -			— Da	ita 0
Terminal 2	- • 8	B		A.		
Fichier Édition Affichage Rechercher Terminal Aide \$ airprobe_rtlsdr.py linux; GNU C++ version 5.3.1 20151219; Boost_105800; UHD_003.009.002-0 gr-osmosdr 0.1.4 (0.1.4) gnuradio 3.7.9 built-in source types: file osmosdr fcd rtl rtl_tcp uhd miri hackrf bl ace airspy redpitaya Using device #0 Realtek RTL2838UHIDIR SN: 00000001 Found Rafael Micro R820T tuner [R82XX] PLL not locked! Exact sample rate is: 2000000,052982 Hz [R82XX] PLL not locked! Using Volk machine: sse3_64_orc 2d 06 22 00 d8 58 3a 30 a0 0d 25 b8 2b		(9) -60 - -80 - -80 - -100 - -120 - - -140 -			¶ ⁴	
01 2b 2b <td< th=""><th></th><th></th><th>929.500 930.000 Frequer</th><th>930.500 931.000 Acy (MHz) Source: <u>https://goo.gl/5L2</u></th><th></th><th></th></td<>			929.500 930.000 Frequer	930.500 931.000 Acy (MHz) Source: <u>https://goo.gl/5L2</u>		

FU Graz

0

IMSI Catchers in Practice

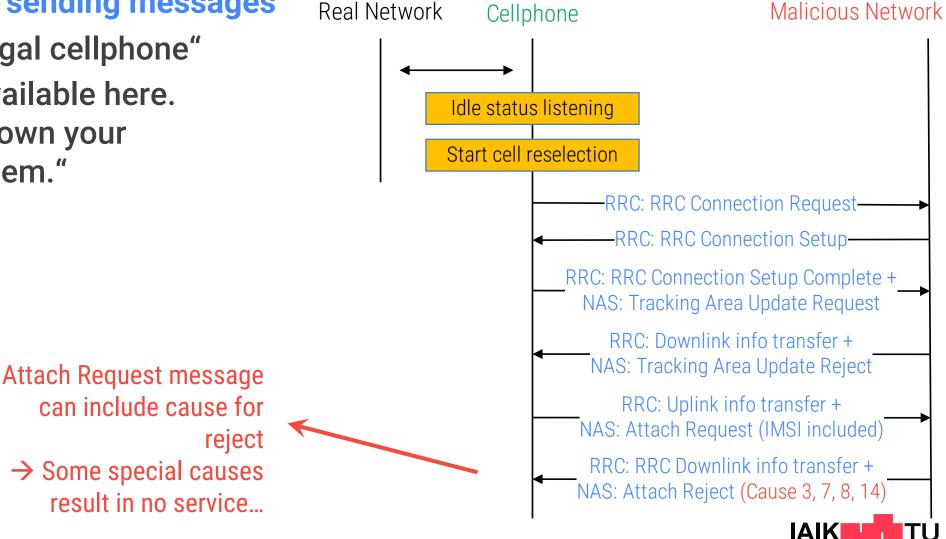
User identification Traffic Man-in-the-middle Retrieve IMSI / IMEI / TMSI Hold user in cell **Reject location update** Actively intercept traffic Tracking Relay to real network Active or passive decryption **UMTS Downgrade** Hold but intercept passively **Blocking UMTS transmission** Imprison in cell \rightarrow Phone not lost to neighbor cell Spoofing system messages

Fake Base Stations

Dirtboxes on a Plane

How the Justice Department spies from the sky

Planes equipped with fake cellphone-tower devices or 'dirtboxes' can scan thousands of cellphones looking for a suspect. 2 Non-suspects' cellphones are 'let go' and the dirtbox focuses on gathering information from the target. 3 The plane moves to another position to detect signal strength and location...


• ...the dirtbox will 'let go' of the suspect's phone once officers move into position nearby. Those officers then use their handheld device to connect to the phone and zero in on the suspect.

Active Attack: DoS

Fake base station sending messages

- "You are an illegal cellphone"
- "No network available here. You can shut down your 2G/3G/4G modem."

Passive Attack: Key Cracking

- A5/1 vulnerable to generic pre-computation attacks
 - Goal: Break session key for communication between base station and phone

How to?

- 1. Intercept GSM call with reprogrammed 20 euro phone
 - Idea: Cluster multiple phones for wide-scale capture
- 2. Crack A5/1 session key using rainbow tables (1-2 TB)
 - Done in a few seconds using GPU power

Note: Also A5/3 uses only 64 bit key on SIM & USIM

- → According to "Intercept" broken by NSA Source: https://goo.gl/mPluNH
- \rightarrow GSM A5/4 and UMTS UEA/1 considered secure with USIM (128 bit key)

Signaling System 7

- Protocols used by most Telcos to identify network elements, clients, ...
- Share session key in case of roaming (but works also without roaming!)

Problem:

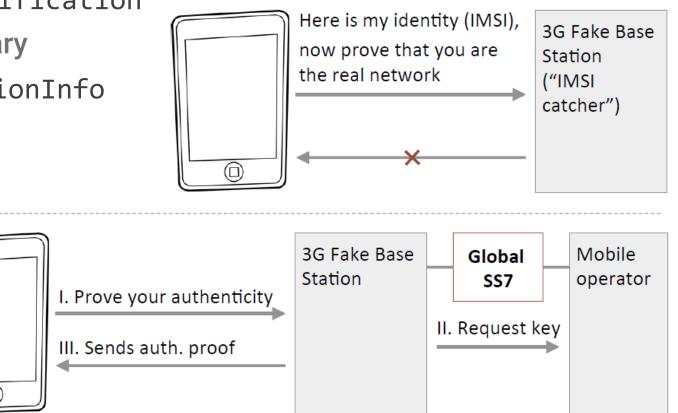
- Walled-garden approach \rightarrow we trust each other, need no auth
- Getting access is easy
 - Buy from telcos for < 1000 euro / month</p>
 - Find equipment unsecured on internet (Shodan)

Attacker's playground

- Track any phone using a variety of signaling messages, e.g.
 - Phone number → AnytimeInterrogation → Get subscriber location (Cell ID)

Signaling System 7

Send from any international SS7 inter-connection \rightarrow abuse legitimate messages


 (\Box)

Abuse Scenario

- Local passive intercept: SendIdentification
 → Easily blockable at network boundary
- **3G IMSI catcher:** SendAuthenticationInfo

Source: https://goo.gl/YBhvXw

- Rerouting attacks: UpdateLocation
 - \rightarrow Message required for operations

Signaling System 7

How to intercept 3G (A5/3)?

1. Use software-defined radio (SDR) to capture 3G transactions

Source: https://goo.gl/YBhvXw

2. Query SS7 SendIdentification to get decryption key

Note: For many networks no SS7 needed for 3G interception!

Network	Encrypts	Authenticates calls / SMS	Protects integrity
	×	×	✓
<u>()</u>	×	×	✓
	×	×	✓
	×	×	✓
ŧ	×	×	✓

LTE Security

Cipher & USIM improvements

→ No known ways to break used crypto, recover key from SIM, break authentication, encryption, or integrity protection

But...

- Not everything is encrypted
 - E.g. null encryption supported \rightarrow Data is simply (unencrypted) plaintext
- Several messages allowed without integrity protection
 - E.g. null integrity for emergency calls, broadcast system, cell handover

Low-cost IMSI catcher for 4G/LTE networks tracks phones' precise locations

\$1,400 device can track users for days with little indication anything is amiss.

The attacks target the LTE specification, which is expected to have a user base of about 1.37 billion people by the end of the year, and require about \$1,400 worth of hardware that run freely available open source software. The equipment can cause all LTE-compliant phones to leak their location to within a 32- to 64-foot (about 10 to 20 meter) radius and in some cases their GPS coordinates,

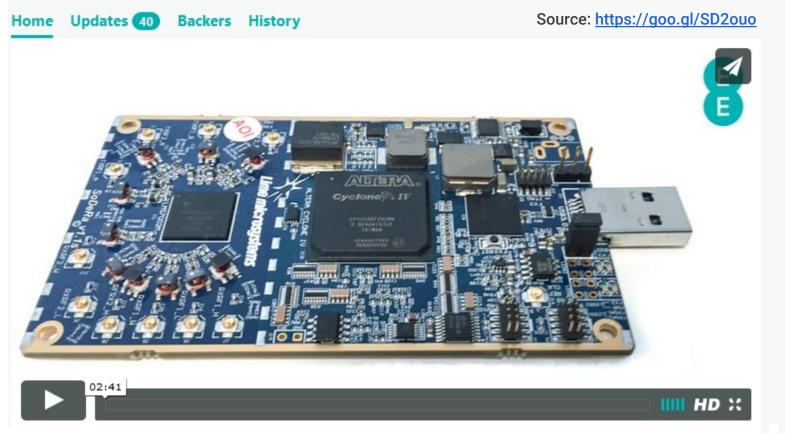
Source: http://goo.gl/jlD7jQ

What?

Exploiting LTE *specification* flaws

Problems?

- RRC Protocol
 - Measurement reports for handover
 - → Not authenticated, not encrypted
- EMM Protocol
 - Control device mobility
 - → Not integrity protected


Attacker can

- Track user location / movements
- Downgrade to non-LTE

LimeSDR: Flexible, Next-generation, Open Source Software Defined Radio

Open Hardware
Technology

Use with popular open source LTE projects

- OpenLTE See: https://goo.gl/GEUeHV
- Open Air Interface See: https://goo.gl/qSNrxk

ed!		Order No
un 21 Inded on	154 [%] funded	3,175 pledges

LimeSDR

Funde

^{\$}289

The LimeSDR is based on Lime Microsystem's latest generation of field programmable RF transceiver technology, combined with FPGA and microcontroller chipsets. These connect to a computer via USB3. LimeSDR then delivers the wireless data and the CPU provides the computing power required to process the incoming signals, and to generate the data to be transmitted by the LimeSDR to all other devices.

Other Attack Vectors

- Branded mobile equipment
 - 3G/4G USB modems
 - Routers / Access points See: <u>http://goo.gl/kIAJpe</u>
 - Smartphones, femtocell, branded apps
- (U)SIM cards
 - Cracking SIM update keys, deploy SIM malware
- Radio / IP access network
 - Radio access network
 - IP access (GGSN, Routers, GRX)

See: http://goo.gl/c3CNZ0

See: https://goo.gl/WYxUTq

Protection Mechanisms

Measures in Austria

- Numbers from 2014 (no LTE!)
- All 3G networks use A5/3 with encryption enabled
 - A1 & T-Mobile roll-out for 2G
- Unclear if networks would accept unencrypted transactions as well (subscriber-initiated)
- Call/SMS impersonation possible in all 2G networks

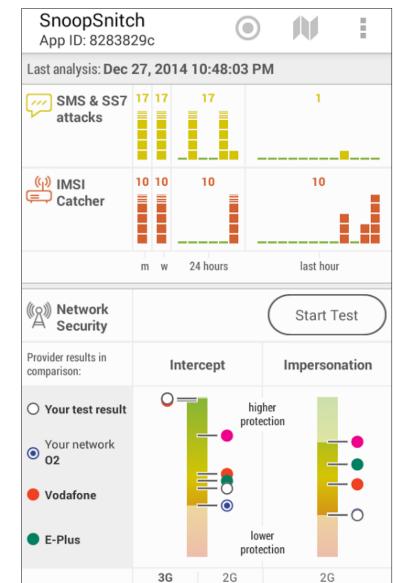
Attack vector		Networks		
		A1	T-Mobile	Three
2G Over-the-air protection				
- Encryption algorithm	A5/0	1%	0%	0%
	A5/1	8%	31%	35%
	A5/3	91%	69%	65%
- Require IMEI in CMC			•	•
- Hopping entropy		•	•	•
- Authenticate calls (MO)		21%	23%	14%
- Authenticate SMS (MO)		9%	67%	10%
- Authenticate paging (MT)		11%	16%	16%
- Authenticate LURs		40%	44%	61%
- Encrypt LURs		100%	100%	100%
- Update TMSI		32%	• 81%	44%
3G Over-the-air protection				
- Encryption				
- Update TMSI		1%	61%	1%
HLR/VLR configuration				
- Mask MSC				
- Mask IMSI				

Abuse often detectable!

		Attack scenario	Detection heuristic
····	SMS Attacks	 SIM OTA attacks Semi-lawful Tracking through silent SMS SS7 abuse: Tracking, Intercept, etc. 	Unsolicited binary SMSSilent SMSEmpty paging
()) = ()	IMSI Catcher	 Tracking or Intercept through 2G or 3G fake base station 	 Unusual cell configuration and cell behavior (detailed later in this chapter)
(((?)))	Network Security	 Insufficient encryption leads to Intercept and Impersonation 	 Encryption level and key change frequency
A	Security	 Lack of TMSI updates enables Tracking 	 TMSI update frequency

Source: https://goo.gl/jFtXYu

SnoopSnitch



Features

- Detection of fake base station (IMSI catcher)
 - Suspicious cell configuration / behaviour
- User tracking
- SS7 attacks

Requirements

- Rooted phone with Android >= 4.1
- Qualcomm chipset
 - Samsung Galaxy S4/S5, Sony Z1, OnePlus 2, ...

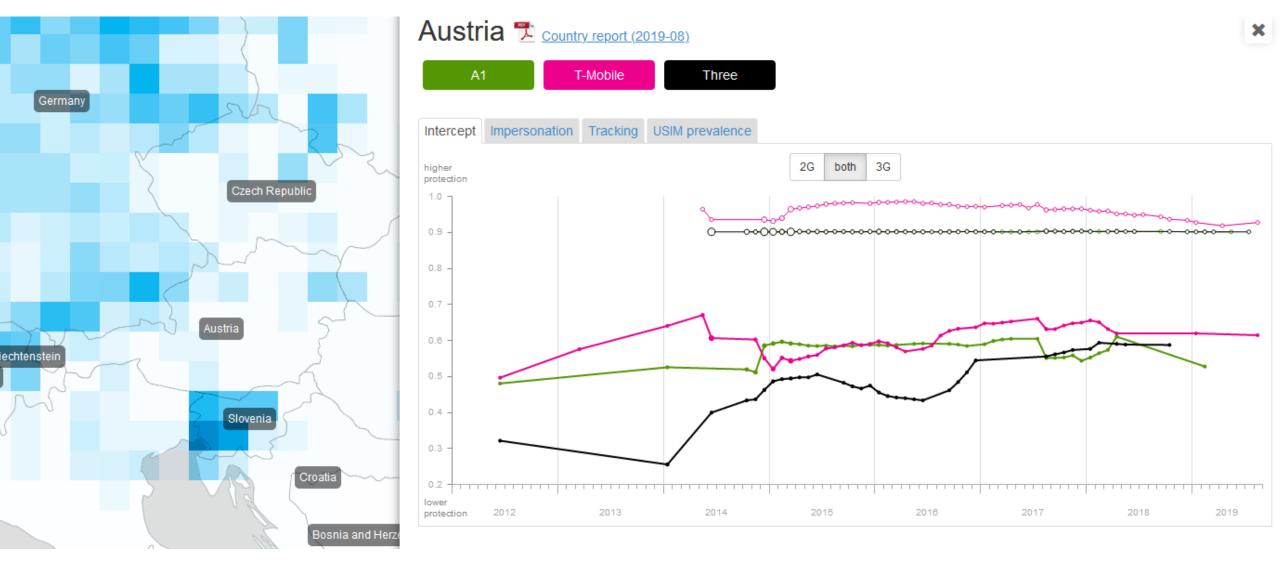
Source: https://goo.gl/KlhaZa

AIMSICD

Features

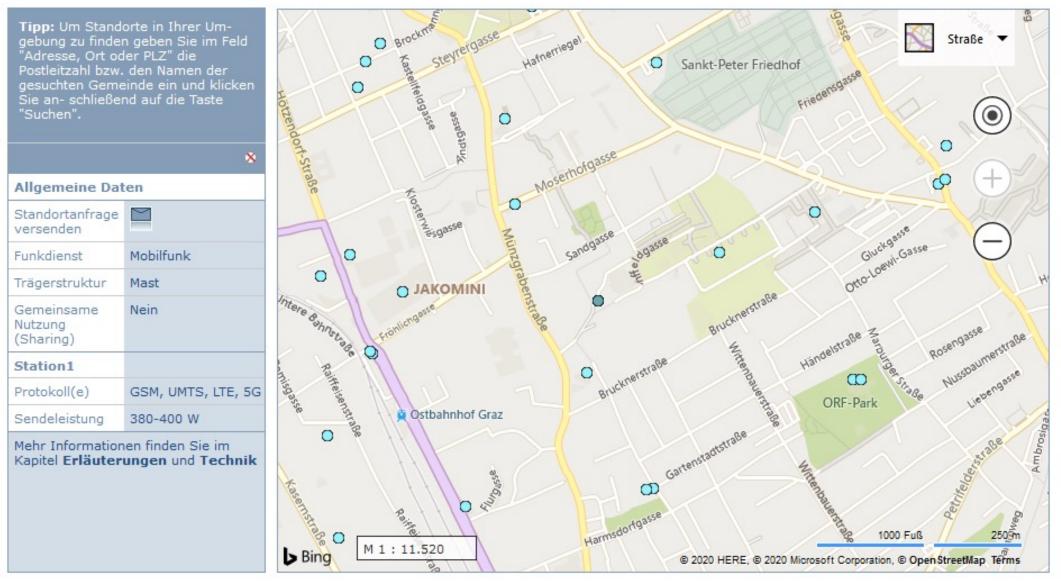
- Focus: Detecting IMSI catchers
- Check consistency of
 - Tower information
 - LAC / Cell ID
 - Signal strength
- Detect silent SMS (type 0 messages)
- Detect FemtoCells

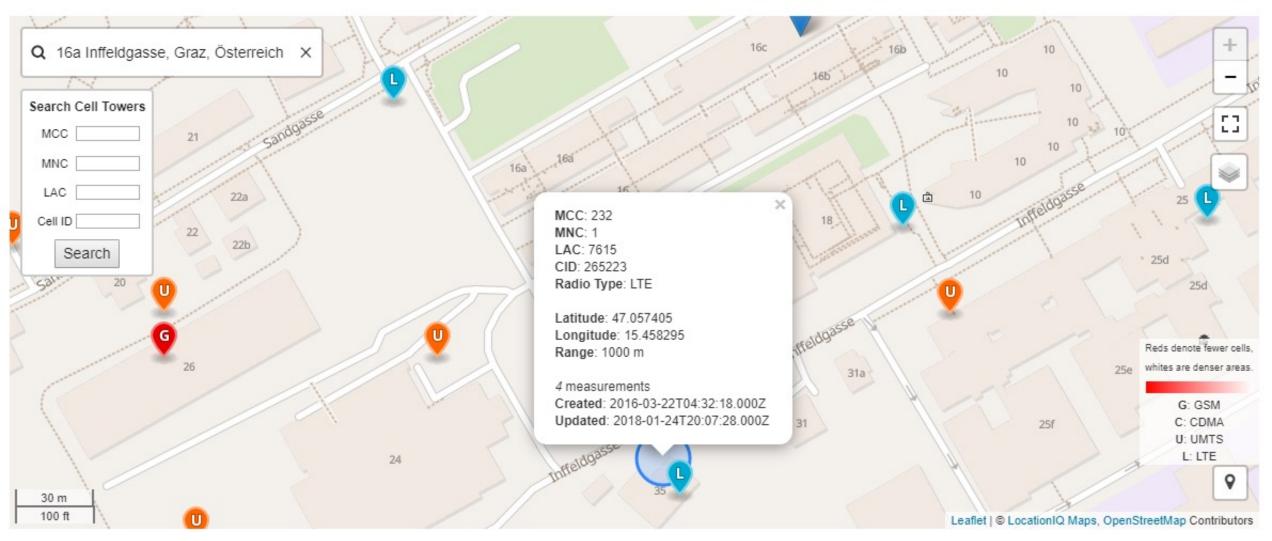
Requirements


- Rooted Android
- Ability to send AT commands to modem

1	3 🛞 🧿 👼 🗕 🌾 🔯	∦ © ♥₁ () 12:33		
	AIMSICD				
MAI	N	s	Curren		
Å	Current Threat Level	i			
۵	Phone/SIM Details	i			
Ŧ	All Current Cell Details	i			
	Database Viewer	i			
; ?	Antenna Map Viewer	i			
Д	AT Command Interface	i			
TRA	CKING				
ૼ૱	Toggle Attack Detection	i			
× A	Toggle Cell Tracking	i			
SET	SETTINGS				
ţĊ;	Preferences	i			

Source: https://goo.gl/mbZFgE


Network Protection Status


Source: http://gsmmap.org

Physical Cell Locations

Source: https://www.senderkataster.at

Physical Cell Locations

Source: https://opencellid.org

• 14.06.2024

- Assignment 2 Presentations

• <u>21.06.2024</u>

– Lecture Exam (Registration Needed!)

